
Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Principles

Landau developed the idea of quasiparticle excitations in the context of interacting Fermi systems. His
theory is known asFermi liquid theory. He introduced the idea phenomenologically, and later Abrikosov
and Kalatnikov gave a formal derivation using diagrammatic perturbation theory to all orders.

Landau suggested describing the excited states of the interacting system as in one-to-one correspondence
with the excited states of the noninteracting system, through “switching on” the pair interactions. The
interactions conserve the total particle number, spin, and momentum. Starting with a noninteracting system
with one particle added in statep, σ to the ground state Fermi sea, and switching on the interactions, so that
the particle becomes “dressed” by its interaction with the other particles, gives a state with characteristics
of a particle in an excited state with definite momentump, spin stateσ , and adding one to the particle
count. The energy of course is not preserved because the Hamiltonian is changed. In addition the state
given by this switch-on process will eventually decay into a collection of more complicated states (e.g. by
exciting particle-hole pairs out of the Fermi sea) so that there is a finite lifetime. Thus the process gives a
state with simple quantum numbersp, σ,N, and counting, because of the one-to-one correspondence with the
noninteracting system, but it is not a true eigenstate of the interacting Hamiltonian. It is called aquasiparticle
or quasi-excitation.

In the noninteracting system particles can only be added forp > pF , and so this gives quasiparticle
excitation withp > pF . (Remember,pF is not changed by interactions.) Forp < p, no particles can be
added to the noninteracting system, but a particle can be removed fromp, σ to form an excited state (of the
N − 1 particle system). Switching on the interaction now gives a quasihole state with momentum−p,−σ .
We can account for both types of excitations in terms of a change in occupation numberδnp,σ which is+1 for
the added particle/quasiparticle forp > pF , and−1 for the removed particle or hole/quasihole forp < pF .
In this notation we are using the filled Fermi sea as a reference for the quasiparticles.

The idea of switching on the interaction to define the quasi-excitations only makes sense if an appropriate
switching rateτ−1

s can be found. This has to be slow enough that perturbations in the energy∼ h̄/τs are
small compared to the energy scale of interest. This is of orderp2/2m− εF ∼ vF (p−pF )with vF ∼ pF/m
the Fermi velocity. On the other handτs must be shorter than the lifetime of the quasiparticle, otherwise it
will decay away during its birth. The lowest order decay process is scattering a particle out of the Fermi
sea. Applying the Fermi Golden rule shows that the decay rate of a quasiparticle of momentump will vary
proportionate to(p−pF )2 for p nearpF , since by energy conservation and the Pauli exclusion principle the
two particles must scatter into a narrow band of states of width about(p−pF ) near the Fermi surface. Thus
the quasiparticle is well defined only forp→ pF—typically we might guess for|p − pF | � pF , although
the estimate must also depend on the strength of the interactions.

For a small number of quasiexcitations the energy relative to the ground state is given by superposition

E − E0 =
∑
p,σ

εpδnp,σ +O(δn2) (1)

whereεp = δE/δnp,σ is the single quasiparticle energy, which will depend just on|p| for a rotationally
invariant spin 1/2 system1. In generalεp 6= p2/2m.

1Lifshitz and Pitaevskii give an argument for why there are no “spin-orbit interaction” terms for spin-1/2 particles. They also
say that even if the bare Fermions are higher spin, the quasiparticles have spin 1/2.
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Propagator Approach

Landau was brilliant enough to correctly construct the picture introduced above, but there are certainly some
mysteries left for the rest of us. A more pedestrian approach is to try to add a particle to theinteracting
ground state, and “see what happens”. This is captured by the propagator or Green function introduced in
Lecture 2, which in Fourier representation is

G(k, t − t ′) =
{ −i 〈ψG ∣∣akσ (t)a

+
kσ (t

′)
∣∣ψG〉 t > t ′

+i 〈ψG ∣∣a+kσ (t ′)akσ (t)
∣∣ψG〉 t ≤ t ′ . (2)

(This is known as thetime ordered productof operators.) I use|ψG〉 as the notation for the ground state of
the interactingsystem, and will use|ψ0〉 for the ground state of the noninteracting system.

The time dependence of the operators is the Heisenberg dependence with the full Hamiltonian

akσ (t) = eiHt/h̄akσ e
−iH t/h̄ (3)

with akσ the Schrodinger version of the operator. Thus fort > t ′ we can writeG as

G(k, t − t ′) = −i
〈
ψG

∣∣∣eiEGt/h̄akσ e
−iH(t−t ′)a+kσ e

−iEGt ′/h̄
∣∣∣ψG〉 (4)

which tells us about the evolution for the timet − t ′ of the statea+kσ
∣∣ψG(t ′)〉 (the state given by adding a

particle tok, σ at timet ′), and in particular what is the overlap with the statea+kσ |ψG(t)〉 after this time. For
t < t ′ we learn about the propagation ofakσ |ψG(t)〉, the state with a particle removed.

Noninteracting System

Let’s first look at the noninteracting system, defined by the Hamiltonian

H0 =
∑
k,σ

εka
+
k,σ ak,σ . (5)

with εk = h̄2k2/2m. The Heisenberg equation of motion

ih̄
dak,σ

dt
= [ak,σ , H0] (6)

gives

ak,σ (t) = ak,σ e
−iεkt/h̄, (7a)

a+k,σ (t) = a+k,σ eiεkt/h̄, (7b)

so that the noninteracting propagator is

G0(k, τ ) =
{ −i 〈ψ0

∣∣akσ a
+
kσ

∣∣ψ0
〉
e−iεkτ/h̄ τ > 0

+i 〈ψ0

∣∣a+kσ akσ
∣∣ψ0

〉
e−iεkτ/h̄ τ < 0

, (8)

= e−iεkτ/h̄
{ −i(1− fk)e−iεkτ/h̄ τ > 0

ifke
−iεkτ/h̄ τ < 0

, (9)

with fk = f (εk) the Fermi step function (fk = 1 for εk < εF ).
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Now introduce the frequency-Fourier transform

G(k, ω) =
∫ ∞
−∞

G(k, τ )eiωτ , (10a)

G(k, τ ) =
∫ ∞
−∞

dω

2π
G(k, ω)e−iωτ . (10b)

Imagine performing the inverse transformG(k, ω) → G(k, τ ) by contour integration. The integration is
along the real axis. Forτ > 0 we can close the contour at∞ in the lower half plane, sincee−iωτ → 0 here.
The integral is given in terms of the residues of the poles in the lower half plane. Similarly forτ < 0 the
integral is given in terms of the residues of the poles in the upper half plane. The expression Eq. (9) is the
inverse of

G0(k, ω) = 1

ω − εk/h̄+ iηk , (11)

with ηk a positive infinitesimal fork > kF and a negative infinitesimal fork < kF . Thus the energy to add a
particle is given by a pole inG0(k, ω) slightly displaced from the real axis. The exact Fourier inverse gives
a time dependence

G0(k, τ ) ∝ e−iεkτ/h̄e−|ηk |τ . (12)

Then setηk → 0.

Interacting System

Now return to the interacting system. We cannot expect to calculate a closed-form expression in general.
Insight is gained from thespectral representation. This is generated by inserting a complete set ofexact
energy eigenstates

∑
m |ψm〉 〈ψm| = 1 between the creation and annihilation operators in Eq. (2). For t > t ′

these are the eigenstates for theN + 1 particle system
∣∣ψ(N+1)

m

〉
with energiesE(N+1)

m ; for t < t ′ they are
the states

∣∣ψ(N−1)
m

〉
with energiesE(N−1)

m . Since momentum is a good quantum number, these states all have
momentumh̄k. Now use

E(N+1)
m − E(N)G = (E(N+1)

m − E(N+1)
G )+ (E(N+1)

G − E(N)G ) (13)

' ε(N+1)
m + µ, (14)

with ε(N+1)
m themth excitation energy of theN +1 particle system (necessarily positive), andµ the chemical

potential. Equation (2) is

G(k, τ ) =
{
−i∑m

∣∣(a+k,σ )m,G∣∣2 e−iε(N+1)
m τ/h̄e−iµτ/h̄ τ > 0

+i∑m

∣∣(ak,σ )m,G
∣∣2 eiε(N−1)

m τ/h̄e−iµτ/h̄ τ ≤ 0
, (15)

with ∣∣(a+k,σ )m,G∣∣2 = ∣∣∣〈ψ(N+1)
m

∣∣a+kσ ∣∣ψ(N)
G

〉∣∣∣2 , (16a)∣∣(ak,σ )m,G
∣∣2 = ∣∣∣〈ψ(N−1)

m |akσ |ψ(N)
G

〉∣∣∣2 . (16b)

The structure of the Fourier representationG(k, ω) is shown in Fig.1. There are poles at the exact
excitation energies

h̄ω =
{
µ+ ε(N+1)

m − iη with residue
∣∣(a+k,σ )m,G∣∣2

µ− ε(N−1)
m + iη with residue

∣∣(ak,σ )m,G
∣∣2 , (17)
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Figure 1: Analytic structure of full propagatorG(k, ω) in the complexω plane. The X denote poles.
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Analytic continuation

Figure 2: Analytic continuation in inverse Fourier transform.

with η a positive infinitesimal.
How does a quasiparticle appear in this picture? Let’s focus on the added particle casek > kF . In

analogy with Eq. (12) we might expect

G(k, τ ) ∝ e−iεkτ/h̄e−γkτ (18)

with γ−1
k a finite lifetime. This would give a pole inG(k, ω) for ω > µ and in the lower half plane, which

is inconsistent with the general expression. To resolve this we must look at the contour integration more
carefully, Fig.2.

Consider theτ > 0 case when the contour for Imω → −∞ gives zero. First we must recognize that
the lifetime of the quasiparticle represented by the exponential decay of the propagator can only occur in the
infinite system limit: if any finite system is “hit”, as in particle addition, it will “ring” at the exact eigenstate
frequencies. It is only in the infinite size limit that there is no recurrence, and the incoherence of the infinity
of frequencies yields exponential decay. In the infinite size limit the poles become dense, and form abranch
cut that cuts the complexω plane into two.
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Split the integral along the real axis in the Fourier inverse into two pieces∫ ∞
−∞
=
∫ µ

−∞
+
∫ ∞
µ

. (19)

The first integral can be safely evaluated by displacing the contour to∞ in the lower half plane without
encountering poles, and so reduces to just the contribution from the vertical portion fromµ− i∞ toµ. We
cannot do this for the second integral, since the real axis is cut off from the lower half plane by the branch
cut. Instead we must define the analytic continuation ofG(k, ω) from the real axis onto a second Riemann
sheet in the lower half plane.The quasiparticle appears as a pole in the analytic continuation ofG(k, ω). A
pole atεk − iγk will give a time dependence as in Eq. (18). It can be shown that forγk sufficiently small, the
contributions from the vertical portions of the contours in Fig.2 give corrections to this leading order result.

Similarly the hole excitations are given by poles in the analytic continuation from the real axisω < µ

into theupperhalf plane, and contribute toG(k, τ ) for τ < 0.
If γk is small, the value ofG(k, ω) in the vicinity of realω ' εk will become large, and this region will

dominate the integral givingG(k, t). This corresponds to a clustering of exact eigenstates and/or a large
values of their weights

∣∣(a+k,σ )m,G∣∣2 in this region. The quasiparticle picture captures all of this in terms of
the single pole.

Further Reading

Statistical Mechanics, part 2of theLandau and LifshitzTheoretical Physics series (this volume is actually
by Lifshitz and Pitaevskii) gives a nice, if typically terse, account: §1 discusses the phenomenological
approach. A full discussion of the diagrammatic derivation (which certainly goes beyond the level of the
present course) is only found in advanced Russian textbooks: the most famous isMethods of Quantum Field
Theory in Statistical Physicsby Abrikosov, Gorkov, and Dzyaloshinskii. It is also discussed in §14-20 of
Lifshitz and Pitaevskii. For some reason, the standard American books on these methods (e.g. the ones by
Fetter and Waleckaor by Mahan) do not include the topic, to my mind one of the great triumphs of this
formal approach.
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