
Physics 127c: Statistical Mechanics

Bose Condensation in Trapped Alkali Gases

Figure 1: Observation of Bose-Einstein condensation of Rubidium atoms by Anderson et al. Science269,
198 (1995). The plots show the momentum distribution (measured by turning the trap off and letting the
cloud freely expand) at successively lower temperatures.

In the past decade or so, Bose condensation has been produced in an entirely different parameter range
than found in the only previously known laboratory system, liquidHe4. The system is alkali metal atoms
trapped in magnetic or optical traps and cooled to very low temperatures. Parameters are 102 − 1010 atoms
in traps of order tens of microns in extent, and cooled to 10−9 to 10−5. Densities of 1011− 1016 atoms/cm3

are attained, compared with the 1021 atoms/cm3 forHe4. Another difference is that the traps give a spatially
varying environment, described by the trap potentialVext (r ).

For a typical example, 106 atoms ofRb87 in a magnetic trap some parameters are: the Bose-Einstein
condensation temperatureTBE ∼ 500nK; the mean interaction energyng ∼ 100nK (n is the density
andg = ũ(0) the zero wave vector component of the pair interaction); and the zero point energy in the
trapping potential12h̄ω0 ∼ 5nK (with ω0 the oscillation frequency in the trapping potential). Interestingly,
these numbers imply that interactions are relatively unimportant atTBE, but are very important in the Bose
condensed state. The particle separation is always large compared with the range of the pair potential, and
as the “s-wave scattering length” that characterizes the scattering of a pair or particles. Because of this we
can replace the atomic potential by an effective point scatterer

u(r) ' gδ(r) = 4πash̄2

m
δ(r). (1)

The phenomenon of Bose-Einstein condensation in these systems was first observed by meausring the
collapse in of the position or momentum distribution. In a noninteracting picture, and approximating the trap
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potential as harmonic, the high temperature distribution is essentially classical (kBT � h̄ω0) so that〈
x2
〉
CL
∼ kBT /mω2

0, (2)

whereas Bose-Condensation into the ground state of the simple harmonic oscillator gives〈
x2
〉
BE
∼ h̄/mω0. (3)

Thus the collapse ratio would be estimated as√√√√〈
x2
〉
CL〈

x2
〉
BE

∼
√
kBTBE

h̄ω0
(4)

which is typically a factor of 10 or so. The ratio of the width of the momentum distributions is given by the
same quantity. (Actually, as we will see, there are large corrections to these estimates from the interaction
effects.) The first experiments measured this collapse, using free expansion to measure the momentum
distribution, Fig. 1, or optical diffraction to measure the spatial extent [Andrews et al. Science273, 84
(1996)].

Bose-Einstein Condensation

We first generalize the notion of Bose-Einstein condensation to the spatially (and perhaps temporally) varying
situation. Define theone particle density matrix

ρ(r , r ′, t) = 〈ψ+(r , t)ψ(r , t)〉 (5)

with ψ the boson annihilation operator. In standard wavefunction notation this is

ρ(r , r ′, t) = N
∑
s

ps

∫
d3r2 . . . d

3rNψ
∗(s)
N (r , r2, . . . rN)ψ

(s)
N (r

′, r2, . . . rN) (6)

which describes a statistical mixture of (symmetric)N particle statesψ(s)
N . Considered as a matrix with respect

to the coordinatesr , r ′ ρ is Hermitian, and so can be diagonalized in terms of some complete orthonormal
set of one particle statesχi

ρ(r , r ′, t) =
∑
i

Ni(t)χ
∗
i (r , t)χ

∗
i (r
′, t) (7)

with Ni(t) the eigenvalues. Bose-Einstein condensation is said to occur if one or more of theNi isO(N).
The condensation is “simple” if only oneNi is O(N) (and then we label this one zero). The common
situation where complex condensation occurs is when different spin components of the atoms are present. I
will assume only one spin component is present, with fixed spin direction, and talk about them as spinless
bosons, and only consider simple condensation.N0 is then the condensate number. The order parameter can
be conveniently defined as

9(r , t) = √N0(t)χ0(r , t). (8)

Defining boson operatorsai, a
+
i by

ai(t) =
∫
d3rχ∗i (r , t)ψ(r ) (9)

etc., then〈N0〉 =
〈
a+0 a0

〉
. If we again use this to implya0 can be considered a classical number rather than

an operator, and allow number-mixed states, we can describe the condensation as

〈a0〉 = N1/2
0 (t), (10)

〈ψ(r , t〉 = 9(r , t). (11)
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Noninteracting Bosons

For noninteracting bosons we just need to study the statistical mechanics of condensation into the energy
levels of the trap potential. This can usually be approximated as harmonic

Vext (r ) = 1

2
m(ω2

xx
2+ ω2

yy
2+ ω2

zz
2), (12)

with ωi the oscillation frequencies along orthogonal axes. For simplicity I will usually assume the isotropic
case, allωi = ω0. Bose condensation in this potential is the subject ofHomework 4.

Interaction Effects

If we imagine Bose condensation into the ground state of the harmonic potential for noninteracting particles,
a very large density would be produced, so large for typical experimental parameters that the interactions
would be very strong: we therefore must take the interactions into account in the Bose condensation.

An interesting observation is that to lowest order the interactions actually favor Bose condensation.
Consider the average interaction energy for the point potential

〈Hint〉 = 1

2
g

∫ 〈
ψ+(r )ψ+(r )ψ(r )ψ(r )

〉
d3r. (13)

Using the inverse of (9)
ψ(r ) =

∑
i

χi(r )ai (14)

this can be written

〈Hint〉 = 1

2
g
∑
ijkl

〈
a+i a

+
j akal

〉 ∫
χ∗i (r )χ

∗
j (r )χk(r )χl(r )d

3r. (15)

If we calculate the average of the product of four operators in Hartree-Foch spirit keeping all nonzero pair
averages 〈

a+i a
+
j akal

〉
' 〈a+i ak〉 〈a+j al〉+ · · · (16)

= NiδikNjδjl + · · · (17)

then we find

〈Hint〉 = 1

2
g
∑
ij

NiNj (2− δij )
∫
|χi(r )|2

∣∣χj(r )∣∣2 d3r, (18)

since for thei = j term there is only one choice of operators, whereas fori 6= j the pairings can be chosen
in two ways. Because of the factor 2− δij the interaction energy is twice as large for the “split” condensation
N1 = N/2, N2 = N/2 as forN1 = N , assuming the integral factor is about the same. This would not be true
for distinguishable particles. Thus the interaction and statistics further favor occupation of a single state.

Gross-Pitaevskii Equation

Using the simplicity of the weak, point interactions allows the derivation of a differential equation for the
order parameter. I will confine myself to zero temperature, so to lowest order in the interactions all the
particles are condensedN0 = N and

ψN(r1, . . . rN) =
N∏
i=1

χ0(r i), (19)
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with χ0 to be determined. The self-consistent best single-particle state for condensation is given by mini-
mizing the total energy

〈H 〉N ' N
∫
d3r

{
h̄2

2m
|∇χ0(r )|2+ Vext (r ) |χ0(r )|2

}
+ 1

2
N2g

∫
d3r |χ0(r )|4 . (20)

(Actually evaluating the integral or calculating
〈
a+0 a

+
0 a0a0

〉
N

gives a factor ofN(N −1) rather thanN2 in the
last term. However for largeN we can ignore the difference.) Minimizing with respect toχ0 maintaining
the normalization

∫ |χ0|2 = 1 gives

− h̄
2

2m
∇2χ0+ Vextχ0+Ng |χ0|2 χ0 = µχ0, (21)

whereµ arises as the Lagrange multiplier of the normalization constraint. Multiplying byχ∗0 and integrating
gives

µ =
∫
d3r

{
h̄2

2m
|∇χ0(r )|2+ Vext (r ) |χ0(r )|2

}
+Ng

∫
d3r |χ0(r )|4 = δ 〈H 〉N

δN
(22)

(where in the last resultδ 〈H 〉N /δχ0 = 0 has been used). Thusµ is indeed the chemical potential. Writing
9 = N1/2χ0 then gives the conventional form of the Gross-Pitaevskii equation

− h̄
2

2m
∇29(r )+ Vext (r )9(r )+ g |9(r )|29(r ) = µ9(r ). (23)

Sinceχ0 is normalized to unity
∫ |9|2 d3r = N .

Equation (23) can also be derived from the stationarity condition for the boson operator

[ψ(r ),H ] = 0, (24)

and then replacingψ → 〈ψ〉 = 9 everywhere.
An important property of the condensed trapped gases is uncovered by considering the solution in a box

of sizeL3 with impenetrable walls. Near one wall (say atx = 0) the behavior is given by the 1d GP equation
with Vext = 0

− h̄
2

2m

d2

dx2
9(x)+ g93(x) = µ9(x) (25)

with boundary condition9(0) = 0. You can check that the solution to the equation is

9(x) = n1/2 tanh(z/
√

2ξ) (26)

with n the density in the bulk far from walls andµ = ng. Thehealing lengthξ is given by

ξ =
√

2mng

h̄2 = (8πnas)−1/2. (27)

The lengthξ is the distance over which variations of the magnitude of the order parameter tend to occur. It
satisfies

ξ

as
= (8πna3

s )
−1/2� 1. (28)
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Thomas-Fermi Approximation

We now return to the case of trapping in the harmonic potentialVext . Usually in atomic trapsξ � aho with
aho = (h̄/mω0)

1/2 the width of the ground state wave function in the harmonic well. This means that the
gradient term in the GP equation can be ignored, except near the surface of the gas where9 → 0. This gives
a local orThomas-Fermiapproximation

|9(r )|2 = µ− Vext (r )
g

, (29)

so that the density of condensate is just such that the chemical potential is constant after taking into account
the repulsive interaction, i.e. the potential well is “filled up” to the chemical potential.

For an isotropic harmonic potential

|9(r )|2 = µ− 1
2mω

2
0r

2

g
(30)

the total number of particles is given by integrating out to the radiusR where1
2mω

2
0R

2 = µ. This gives

R =
(

15

4π

Ng

mω2
0

)1/5

= (15Nasa
4
ho)

1/5. (31)

Hence
R

aho
=
(

15N
as

aho

)1/5

. (32)

This number is typically of order 5 to 10 for the trapped gases, so that the width of the condensed ball of gas
is significantly wider than given by the noninteracting theory. This ratio determines the relative importance
of interaction and trap-potential effects.

Time Dependent Gross Pitaevskii Equation

Generalizing Eq. (24) to the time dependent equation, and following the same procedure gives the time
dependent Gross-Pitaevskii equation

ih̄
∂9(r , t)
∂t

= − h̄
2

2m
∇29(r , t)+ Vext (r )9(r , t)+ g |9(r , t)|29(r , t). (33)

The stationary solution is given by setting9(r , t) = e−iµt/h̄9(r ), incidentally verifying the Josephson
evolution equation for the phase of the order parameter.

Excitations

We can look for the solution of excitations oscillating at some frequencyω

9(r , t) = 90(r )e−iµt/h̄ + δ9(r , t) (34)

with δ9 small and|90(r )|2 related toµ andVext (r ) as before. Substituting into Eq. (33) and linearizing in
δ9 gives

ih̄
∂δ9(r , t)

∂t
= − h̄

2

2m
∇2δ9(r , t)+ Vext (r )δ9(r , t)+ g |90(r , t)|2 δ9(r , t)+ g92

0(r , t)δ9
∗(r , t). (35)
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The involvement of bothδ9 andδ9∗ in this equation suggests the trial solution

δ9(r , t) = e−iµt/h̄ [u(r )e−iωt + v∗(r )eiωt] . (36)

Substituting and picking out the pieces varying ase±iωt gives

h̄ωu(r ) = [H0− µ− 2g |90(r )|2]u+ g92
0(r )v (37)

−h̄ωv(r ) = [H0− µ− 2g |90(r )|2]v − g9∗20 (r )u (38)

with H0 = −(h̄2/2m)∇2 + Vext . These are a special case (∂/∂t → ±iω) of the Bogoliubov-deGennes
equations. For the free space caseVext = 0,90(r ) = n1/2, µ = ng, andu(r ), v(r ) ∝ eiq·r . This gives

ω =
√(

h̄2q2

2m

)2

+ h̄2q2
(ng
m

)
. (39)

This is exactly the Bogoliubov spectrum.

Collective Mode, Hydrodynamics

In the limit where the interactions dominate the Gross-Pitaevskii or Bogoliubov-deGennes equations reduce
to familiar hydrodynamic equations for the superfluid velocity coupled to the density. Introducing magnitude
and phase variables for the order parameter

9(r , t) = √n(r , t)ei8(r ,t) (40)

the time dependent GP equation can be expressed as

∂n

∂t
+∇ · (vsn) = 0, (41a)

m
∂vs
∂t
+∇ ·

(
Vext + ng + 1

2
mv2− h̄2

2m
√
n
∇2√n

)
= 0, (41b)

with vs = (h̄/m)∇8 as usual. The last term in the second equation, known as the quantum pressure, is often
small (e.g. at long enough wavelengths). The equations then take the usual form of hydrodynamic equations
for the broken symmetry variable8 and the conjugate variablen.

An important application of the use of Eqs. (41) is in the collective modes of the trapped condensate
in the trap potential. For example for the harmonic trap Eq. (12). The steady state solution has the density
variationn0 given by

Vext (r )+ gn0(r ) = µ. (42)

Small oscillations about this solution follow the equations (vs, δn small, neglect the quantum pressure term)

∂δn

∂t
+∇ · (vsn0(r )) = 0, (43)

m
∂vs
∂t
+∇ · (gδn) = 0. (44)

Together with Eq. (42) these give

m
∂2δn

∂t2
= ∇ · [c2(r )∇δn] , (45)

wherec(r ) = √(µ− Vext (r )) /m plays the role of a position dependent speed of sound.
These equations are useful for understanding the oscillations of the trapped condensate in experiment,

e.g. Fig.2.
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Figure 2: Oscillations in the axial width of the trapped gas (m = 0 mode) at low and high temperatures.
[From Stamper-Kurn et al., Phys. Rev. Lett.81, 500 (1998)]

Other Applications

The Gross-Pitaevski equation provides a simple approach to study other interesting questions, such as vortex
lines in rotating samples, the Josephson effect, and the phase interference of two condensed clouds (for the
latter seethe paperby Röhrl et al., Phys. Rev. Lett.78, 4143 (1997)).

Further Reading

Leggett(the 2003 Nobel Prize winner) has a nicereview articleon the basic physics of Bose-Eisntein con-
densation in the context of atomic traps, Rev. Mod. Phys.73, 307 (2001). Sections IID, IIE, III, IVD, and
V are particularly relevant. The other sections go into topics I have not covered, such as the multiplicity of
hyperfine levels, a careful discussion of the pair interaction, Bogoliubov theory, and the Josephson effect.
An idiosyncrasy of Leggett (which may be correct!) is that he does not like the approach that has become
common (and which I have used) of assuming a nonzero value for the expectation value of a creation or anni-
hilation operator, which requires number-mixed states: he tries to avoid this approach wherever possible. An
earlyreferenceon the application of the Gross-Pitaevskii equation isBaym and Pethick, Phys. Rev. Lett.76,
6 (1996). You could also look at one or more of the Nobel lectures referenced in the context of Homework
7 in Ph127a.

April 20, 2004

7

http://prola.aps.org/abstract/PRL/v78/i22/p4143_1
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RMPHAT000073000002000307000001&idtype=cvips&gifs=yes&jsessionid=1502381082487660431
http://prola.aps.org/abstract/PRL/v76/i1/p6_1
../Ph127a/index.html

	Physics 127c: Statistical Mechanics
	Bose Condensation in Trapped Alkali Gases
	Bose-Einstein Condensation
	Noninteracting Bosons
	Interaction Effects
	Gross-Pitaevskii Equation
	Thomas-Fermi Approximation
	Time Dependent Gross Pitaevskii Equation
	Excitations
	Collective Mode, Hydrodynamics
	Other Applications


	Further Reading

