
Physics 127c: Statistical Mechanics

Monte Carlo Methods

Monte Carlo Integration

Monte Carlo is most basically a way of doing integrals or sums.
Consider first a one dimensional integral

I =
∫ 1

0
f (x)dx = 〈f (x)〉

where we have added the suggestive〈〉 meaning the average over a uniform distribution ofx in the interval
0 ≤ x ≤ 1. We will evaluate the integral on a computer as the discrete sum

I ≈ 1

M

M∑
i=1

f (xi).

We can imagine two simple methods:

Method 1: take equally spacedxi with separationh = 1/M;

Method2: generateM randomxi from a uniform distribution.

In the latter case sincef (xi) is a random variable, the central limit theorem tells us thatI is a Gaussian
random variable for largeM with variance

σ 2
I =

1

M
σ 2
f

so that the error inI goes down as 1/
√
M and is smaller if the varianceσ 2

f of f is smaller.
For a one dimensional integration the Monte Carlo method is not compelling. However consider ad

dimensional integral evaluated withM points. For a uniform mesh each dimension of the integral getsM1/d

points, so that the separation ish = M−1/d . The error in the integration over onehd cube is of orderhd+2,
since we are approximating the surface by a linear interpolation (a plane) with anO(h2) error. The total
error in the integral isMhd+2 = M−2/d . The error in the Monte Carlo method remainsM−1/2, so that this
method wins ford > 4.

We can reduce the error inI by reducing the effectiveσf . This is done by concentrating the sampling
wheref (x) is large, using a weight functionw(x) (i.e. w(x) > 0,

∫ 1
0 w(x) = 1)

I =
∫ 1

0

f (x)

w(x)
w(x) dx ⇒ 1

M

M∑
i=1

f (xi)

w(xi)

where in the last sum wegenerate thexi with distributionw(x)—known asimportance sampling. How do
we generate thexi? We can try by introducing the auxiliary variabley defined by

dy

dx
= w(x), y(x = 0) = 0,

and theny(x = 1) = 1 follows by integrating. From this findx(y). Now generate a set ofyi with uniform
distributionP̄ (y) = 1. Then since

P̄ (y)dy = P(x)dx
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the setxi = x(yi) are distributed withw(x).
Unfortunately this simple scheme is not always possible, e.g. for the common case of a Gaussianw(x) ∝

exp[−x2/2σ 2]. In this particular case a cute trick can be used, which is worth mentioning since Gaussian
distributions are so common. Generate a 2d distributionP(x1, x2) ∝ exp[−(x2

1 + x2
2)/2σ

2]. In polar
coordinates this becomes

P(r, θ)drdθ ∝ e−r2/2σ2
r dr dθ

or with u = r2/2σ 2

P(u, θ) ∝ e−ududθ.
Now dy/du = e−u can be solved to giveu = − ln[(1− y)]. So if we generateyi with a uniform distribution
on the interval [0,1] and evaluateri = σ√−2 ln(1− yi), andθi with a uniform distribution on the interval
[0,2π ], the variablesx1 = r cosθ andx2 = r sinθ have a Gaussian distributions (and both numbers can be
used to generate two successive entries in the list ofxi).

Monte Carlo in Classical Statistical Mechanics

Classical statistical mechanics is just a very big sum! For example, canonical averages are

〈A〉 =
∑

statese
−βHA∑

statese
−βH .

We cannot enumerateall the states (e.g. 2N states for an Ising spin system) for anyN large enough to be
interesting. Monte Carlo methods instead generate a subset of microstatesExl with probability distribution
P(Exl), and estimate averages

〈A〉 ≈
∑M

l=1 e
−βH(Exl)A(Exl)/P (Exl)∑M

l=1 e
−βH(Exl)/P (Exl)

.

(For concreteness, think ofExl as being a particular configuration ofN spins in the Ising model, for example.)
It is natural to chooseP(Exl) to bePeq(Exl) = Z−1e−βH(Exl) so that

〈A〉 ≈ 1

M

M∑
l=1

A(Exl).

But how do we generate theExl?
In theMetropolis methodthe Exl are generated as a Markov process, withExl+1 generated fromExl via a

suitably chosen transition probabilityW(Exl → Exl+1). A sufficient condition to guarantee thatPeq will be
maintained by this process is to impose theprinciple of detailed balanceas a constraint on theW for every
pair of statesExr, Exs

Peq(Exr)W(Exr → Exs) = Peq(Exs)W(Exs → Exr),
i.e. the condition that the equilibrium distribution ratio betweenExr andExs is maintained by direct transitions
between these states. Note that it is not necessary to impose this condition: other constraints can be found
involving transitions to other states that will maintainPeq . Note also that we are saying nothing about how
the physical system maintainsPeq : this is a question of the dynamics of the system, which is not needed to
evaluate classical canonical averages.

A common algorithm is to choose

W(Exr → Exs) ∝
{
e−βδH if δH > 0
1 if δH ≥ 0
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with δH = H(Exs)−H(Exr), then we have

W(Exr → Exs)
W(Exs → Exr) =

{
e−βδH

1 for H(Exs) > H(Exr)
1

e−β(−δH) for H(Exs) < H(Exr)

}
= e−β[H(Exs)−H(Exr )]

with the final result independent of whetherδH is positive or negative.
We also must show that theExl . . . does indeed converge to the distributionPeq . To do this consider an

ensemble of the Markoff process or chains (i.e. many repetitions of the Monte Carlo scheme). Suppose at
a given step there areNr chains in the stater andNs chains in the states whereH(Exr) < H(Exs). We have
some way of generating transitions betweenr ands. If we first ignoreδH = H(Exs)−H(Exr), the ratesr → s

ands → r must be equal (call thisW(0)
rs = W(0)

sr ). Then

W(Exr → Exs) = W(0)
rs e
−βδH ,

W(Exs → Exr) = W(0)
rs .

The number of transition at this step is

Nr→s = NrW(0)
rs e
−βδH ,

Ns→r = NsW(0)
rs ,

so that the net number of transition is

1Nr→s = Nr→s −Ns→r = NrW(0)
rs

(
e−βH(Exs)

e−βH(Exr )
− Ns
Nr

)
.

Clearly this expression is zero for the equilibrium distribution, and also we see that ifNs/Nr is too small,
the sign is such that the ratio isincreased, and vice versa.

A simple example will clarify the discussion. Consider the Ising model with nearest neighbor interactions
H = −1

2J
∑

i,δ sisi+δ. The Monte Carlo procedure is:

Step 1: Flip a single, randomly chosen spin (soW(0)
rs = W(0)

sr ). Call this spini.

Step 2: CalculateδH = −1
2J
∑2d

δ=1 sι+δ(±2) with the+ sign if theith spin is flipped up, and the− sign if
the spin is flipped down.

Step 3: Keep the new configuration according to the Metropolis algorithm, i.e. ifδH < 0 keep the new
state, whereas ifδH > 0, draw a random numberz uniformly distributed on [0,1] and keep the new
state ifz < e−βδH , otherwise keep the old state.

This process generates a sequence of states that can be used (after a number of iterations to allow
convergence to the estimate ofPeq) to calculate canonical averages. Alternatively to step 1, we could sweep
through the lattice systematically, flipping each spin in turn to be tested by the Metropolis algorithm.

A number of caveats should be considered:

1. Successive configurations will not be statistically independent. This is no problem calculating the
mean (each iteration is an unbiased sample) but the error in the estimate isnot given byσ/

√
Ns with

σ 2 the measured variance andNs the number of samples.

2. The random number generator better be good—there are unfortunate examples in the literature where
incorrect answers were generated because the “random” numbers in fact had subtle correlations.
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3. The single spin updates become very inefficient at low temperatures if low energy transitions that
involve many (correlated) spin flips are important, such as the cluster flips we found in the 1d Ising
model, or long wavelength spin-wave type distortions in other models. This is becausee−βδH for a
single spin flip will almost always be very small, so that the “dynamics” freezes. A more sophisticated
way of generating possible updates is needed.

4. Feasible system sizes are limited in practice. Even with modern computers a 102 × 102 × 102 would
be considered large, and finite size corrections may be quite important—note that 5% of the particles
are on a surface in this system of 106 spins!

Further Reading

A good reference for this section is chapter 8 ofComputational Physicsby S. Koonin. A more advanced
reference isMonte Carlo Simulation in Statistical Physicsby Binder and Heerman. There are numerous Java
implementations of the Metropolis algorithm on the 2d Ising model on the internet—do a Google search.
Two examples are

http://threeplusone.com/code/ising.html
http://stp.clarku.edu/simulations/ising2d/

4

http://threeplusone.com/code/ising.html
http://stp.clarku.edu/simulations/ising2d/

	Physics 127c: Statistical Mechanics
	Monte Carlo Methods
	Monte Carlo Integration
	Monte Carlo in Classical Statistical Mechanics
	Further Reading


