
Physics 127b: Statistical Mechanics

Scaling Hypothesis

The scaling hypothesis allows us to relate all the power laws for the static, bulk thermodynamic quantities
and the correlation function in terms of two basic exponents. The hypothesis was first arrived at empirically
by Widom, and then using the phenomenological idea that asingle, divergent correlation lengthdetermines
the behavior near the transition temperature by Kadanoff and others.
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Figure 1: Critical region (encircled by short-dashed line) where the scaling hypothesis is supposed true.
Behavior along the paths denoted by long-dashed arrows—which avoid the critical point—should be smooth.

The hypothesis can be introduced by an expression for the order parameter as a function oft = T −Tc in the
critical regime and the symmetry breaking fieldh. We will use the language of a magnetic phase transition
for concreteness, but the results are quite general:

m = D |t |β W±
(
E

h

|t |1
)
. (1)

Hereβ and1 areuniversalexponents, and the functionsW+ for t > 0 andW− for t < 0 are alsouniversal,
whereasD andE (which depend on the units chosen) are non-universal. The form Eq. (1) determines the
behavior approaching the critical pointt = h = 0, i.e. t, h both small) but is assumed valid forarbitrary
ratios oft/h. The only singular behavior is at the critical point: elsewhere the physical behavior should be
(essentially) smooth (e.g. along the dashed lines in Fig. (1). This allows us to determineα, β, γ, δ in terms
of β and1 (and also can be used to show that the exponents above and below the critical temperature are
the same).

First consider the variation withh for T > Tc, i.e. some nonzero value oft > 0. Since the trajectory does
not pass through the critical point, the dependence onh should be analytic

W+(x) = b+x + c+x3+ · · · . (2)

There are no even terms by the symmetry inh. The susceptibility is

χ = ∂m/∂h|h=0 = |t |β−1 DEW ′+(0), (3)

which determines the susceptibility exponent

γ = 1− β. (4)
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ForT < Tc the argument is similar except there is a finitem ash→ 0, so

W−(x) = a−sign(x)+ b−x + c−x3+ · · · . (5)

This gives ash→ 0
m(h→ 0) = |t |β DW−(0). (6)

showing thatβ is indeed the order parameter exponent. The susceptibility belowTc can still be defined in
terms of the change of the magnetization away from the zero field value, and the exponent is easily seen to
be the same as aboveTc.

Forh 6= 0 the behavior will be smooth as a function oft , even whent passes through zero. In particular the
t dependence ofm should vanish here att = 0. This fixes the behavior ofW±(x) for x →∞

W±(x →∞) ∼ |x|β/1 signx, (7)

(we know the behavior must be odd inh) so that

m(h, t = 0) ∼ |h|β/1 signh (8)

giving
δ = 1/β. (9)

The smooth behavior ast passes through zero also relatesW+ andW−.

We can also look at the scaling behavior of the free energy density

f = A |t |2−α Y±
(
C
h

|t |1
)
. (10)

Two remarks are in order. First, the prefactor is explicitly written so that the specific heat has the exponent
α. Secondly the argument of the scaling functionY is againh/ |t |1—this is not a separate assumption since
we can get the magnetization from the free energy.

The specific heat fort →±0 ath = 0 is simply

C ∝ |t |−α Y±(0). (11)

The magnetization is

m = ∂f

∂h
∼ |t |2−α−1 Y ′±

(
C
h

|t |1
)

(12)

so that comparing with Eq. (1) fixes
α = 2− β −1 (13)

and shows the functionW± is justY ′±. Note that corresponding to the jump in the order parameter across
h = 0 for t < 0, the functionY−(x) for smallx will contain a term proportional toxsignx, as well as (even)
analytic terms.

We now look at the correlation function, and introduce the correlation exponentν giving the divergence of
the correlation length ath = 0

ξ ∼ |t |−ν . (14)

In non zero field we would then have

ξ(t, h) ∼ |t |−ν X
(
h

|t |1
)
. (15)
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The scaling form for the correlation function is

G(r, t, h) = 1

rd−2+η g(r |t |ν , h/ |t |1) (16)

with the exponentη giving the power law decay att = h = 0. Just as the mean square fluctuating temperature
can be related to the specific heat, the mean square magnetization (

∣∣mEq→0

∣∣2) gives us the susceptibility

χ =
∫
G(r, t, h = 0)ddr (17)

∼ |t |−(2−η)ν
∫
y2−d−ηg(y,0)dy, (18)

relating a combination ofη andν to the susceptibility exponentγ

(2− η)ν = γ. (19)

So far we have related the exponentsα, β, γ, δ, ν, η in terms of some choice of three “fundamental” exponents.
All these results are satisfied by the mean field theory exponents, and are well satisfied by experimentally
measured exponents too. An additional relationship known ashyperscaling, or strong scaling, isnotsatisfied
by the mean field exponents, and also not for some rare experimental situations, such as systems with long
range forces, but is otherwise generally found to be true. It results from the argument that the fluctuations
dominate the (singular) contribution to the free energy density, or equivalently that the free energy per
correlation volumeξd should be of orderkBTc. This gives ath = 0

f ∼ t2−α ∼ ξ−d (20)

and so
dν = 2− α. (21)

We don’t expect this to be satisfied in mean field theory, since there themeanvalue of the magnetization
gives the singular free energy, and the fluctuations are explicitly ignored. Indeed the criterion Eq. (20)
gave us the Ginzburg criterion for when mean field theory breaks down, i.e. the boundary of the critical
region—hyperscaling supposes this relationship is then satisfied throughout the critical region.

The scaling hypothesis is empirical/phenomenological, but sets the stage for a more complete understanding—
if we can understand the scaling behavior we have a quite complete account of the critical region.
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