
Physics 127b: Statistical Mechanics

Boltzmann Equation I: Scattering off fixed impurities
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Figure 1: Scattering off a fixed impurity: thescattering outandscattering inprocesses.

The particle distributionf (Ev) at Ev is changed by two types of processes: scattering fromEv to any other ve-
locity, which decreasesf (Ev)—thescattering out processes—and scattering from other velocities toEv,which
increasesf (Ev)—scattering in. These processes can be collected in symmetry related pairs, Fig.1. The
scattering in and out processes shown in the figure are related by the combined process of space and time
inversion, and sohave the same scattering cross section1. Thus we can write the collision term

df (Ev)
dt

∣∣∣∣
coll

=
∫ (

f ′1 − f1
)
vnsσ (v, θsc) d�sc

wherens is the density of scattering centers,Ev′ andEv are related by the scattering angleθsc, |Ev| =
∣∣Ev′∣∣ (elastic

scattering), andf ′1 is used as a shorthand forf1
(Ev′) (see figure). Note that we arrived at this by writing

the terms in brackets as(f ′ − f ) and noticing thef0 pieces cancel, since the scattering does not change
|v|. The second term in the integral corresponds to “scattering out” and is given by the flux of particles
at velocity Ev i.e. f1v multiplied by the scattering cross-section for scattering into the solid angled�sc i.e.
nσ (v, θsc) d�scwith σ (v, θsc) the differential scattering cross-section of a single scattering center. The first
term gives the “scattering in” processEv′ → Ev, which is governed by the same scattering cross section (by
time and space inversion symmetry).

Example: Electrical conductivity

Lets apply this to the conductivity calculation. We arrive at the equation (for smallEE, f1)

q

m
EE · v̂ ∂f0

∂v
= −f1nsv

∫
σ (v, θsc) d�sc + nsv

∫
f ′1σ (v, θsc) d�sc (1)

denoting unit vectors by e.g.̂v. If we define polar angles forEv relative to the field directionEE, the left hand
side is proportional to cosθ , and since the equation is linear we also expect this dependence forf1 (Ev), i.e.

f1 (Ev) = cosθ g1 (v) = v̂ · Êg1 (v)

1I presume you are familiar with describing scattering probabilities in terms ofcross sections.If not, your favorite Quantum
textbook can help out.
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with g1(v) to be found. (You can, if you prefer, expandf1 (Ev) in Legendre polynomials of cosθ , and use the
usual orthogonality relationships.) The second integral in Eq. (1) is

∫
f ′1σ (v, θsc) d�sc = g1 (v) Ê ·

∫
v̂′σ (v, θsc) d�sc (2)

with v̂ · v̂′ = cosθsc. Now since the integral on the rhs of Eq. (2) is over allv̂′, the only vector appearing in
this integral to set a direction iŝv, and so we must have∫

v̂′σ (v, θsc) d�sc = A (v) v̂ (3)

Finally taking the dot product witĥv gives

A =
∫

cosθsc σ (v, θsc) d�sc (4)

and putting Eqs. (1-4) together gives

qE

m

∂f0

∂v
= −nsvg1 (v)

∫
(1− cosθsc) σ (v, θsc) d�sc

so that

f1 (Ev) = q

m

∂f0

∂v

1

nsvσ̄ (v)
v̂ · EE

Note it is σ̄ (v), aweightedintegral of the differential scattering cross-section at speedv

σ̄ (v) =
∫
(1− cosθsc) σ (v, θsc) d�sc,

rather than the total cross-sectionσt =
∫
σ (v, θsc) d�sc that appears in this expression. The appearance of

the extra term in cosθsc comes from the scattering in process. The effect of the weighting factor is to reduce
the effect of forward scattering—these of course do not much change the current flow, so this makes physical
sense. There may be some speed dependence ofσ̄ : puttingf1 into the expression for the current Eq. (??)

Ej =←→σ · EE =
∫
q Evf1(Ev) (5)

will show us what velocity average we need to calculate. The final result can be written in the form derived
in the previous lecture using the relaxation time approximationσ = nq2τ/m, whereτ−1 = nsv̄σtr with the
transport cross-section given by the appropriate speed average ofσ̄ (v)

σtr =
∫
v3 ∂f0

∂v
σ̄ (v) dv∫

v3 ∂f0
∂v
dv

.

Example: thermal conductivity of an accretion disk

For another example consider the energy transport by light (photons) scattering off nonrelativistic electrons,
an important application in astrophysics, e.g. to study accretion onto a black hole (see Ph136 notes, §2.8 for
more details).

For photon energies much less than the electron rest masskBT � mec
2 the cross section is theThomson

cross sectiongiven by simple electromagnetic considerations (Jackson§14.7)

σ(θsc) = 3

16π
σt [1+ cos2 θsc] (6)
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withσt = (8π/3)(e2/mec
2)2 the total (integrated) cross section. So in this case we have an analytic expression

for the scattering.

We proceed as before now with the photon distribution (as a function of momentum or wave vector not
velocity!) f (Ex, Ek) = f0(Ex, Ek)+ f1(Ex, Ek) with f0 the Planck distribution

f0 = 1

εβh̄ck − 1
. (7)

We now know the collision term of the Boltzmann equation: where does the “driving” on the left hand side
come from? The problem we are considering is the heat transport in a temperature gradient, so nowf0 is
spatially dependent throughT (Ex). (This is a situation where the collisions relax to a “local equilibrium”
fixed by the local temperature, rather than to some global equilibrium.) Again assumingf1 is small we have

cf ′0k̂ · E∇T =
df

dt

∣∣∣∣
coll

(8)

= −nec
∫
(f1(Ek)− f1(Ek′))σ (k̂ · k̂′)d�′ (9)

writing f ′0 for df0/dT .

The argument proceeds exactly as in the electrical conductivity case withE∇T setting the direction rather than
EE. So repeating those arguments we get

f1(Ek) = − f ′0
neσ̄

k̂ · E∇T (10)

where

σ̄ =
∫
(1− cosθsc) σ (θsc) d�sc. (11)

In this case, the integral just gives the total cross sectionσt , since the term in cosθsc cancels by symmetry.

Now calculate the heat transport
EJQ = 2

∑
Ek
f1(Ek) h̄ck ck̂ (12)

(2 for two polarizations). Transforming the sum to an integral in the usual way, this gives

EJQ =
(∫

d�

4π
k̂ k̂ · E∇T

)
h̄c2

π2neσt

∫ ∞
0
k3df0(k)

dT
dk. (13)

The integral over the Planck distribution can be done to finally giveEJQ = −κ E∇T with

κ = 4

3

acT 3

σtne
with a = 8π5k4

B

15h3c3
, (14)

(aT 4 is the energy density).
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