
Physics 127a: Class Notes

Lecture 11: Entropy, Information and Maxwell’s Demon

Gibbs Entropy

For the canonical ensemble using

Pn = Q−1
N e
−βEn (1a)

A = −kT lnQN = U − T S (1b)

it is easy to show
S = −k

∑
n

Pn lnPn (2)

an expression directly relating the thermodynamic entropy to the microscopic probability distribution. The
same result applies in the grand canonical ensemble, and the expression is consistent with the original
definition in the microcanonical ensemble (Pn = 1/� over� accessible states).

This is known as theGibbs expressionfor the entropy. Note that is presents the entropy form a slightly
different perspective—the entropy of theensemblerepresenting a physical situation rather than the entropy
of asystem. Those of you who have encountered Shannon information theory will find Eq. (2) familiar: you
can think of the entropy as the information to be learned on a thermodynamic system by determining which
microstate the system is actually in. (Note, of course, the concept of entropy preceded information theory.)

You might wonder, since Eq. (2) only depends on the probabilities within the ensemble, whether we can
use this as a microscopic definition of the entropy from which we can simply and unambiguously derive the
increase of entropy directly from the laws of mechanics. The answer is no.

Consider a classical continuum system where
∑

n is replaced by the integral over phase space. Dropping
constants we then have

S ∝ −k
∫
ρ ln ρ (3)

with ρ the phase space distribution and the integral is over 6N disensional phase space. Does this entropy
increase in the dynamics? The dynamics ofρ under the Hamiltonian of the system satisfies Liouville’s
theorem

dρ

dt
= 0. (4)

Consequently the Gibbs entropy isconstantin the dynamicsdS/dt = 0! The phase space density is
redistributed, but it’s value (moving with the phase space coordinate) does not change, and so the integral is
unchanged. To retrieve the increase of entropy we have to introduce some coarse graining or statistical ideas
on top of the dynamics. This is not surprising: the microscopic dynamics is invariant under time reversal,
whereas the increase of entropy is not. We can certainly use the Gibbs expression to calculate the entropy
for the equilibriumρ, but the use of the expression as a microscopic one for distributionsPn far away from
equilibrium ones is a much more uncertain question.
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Maxwell’s Demon

For those of you whowant to read more about Maxwell’s demon I’ve listed some references below:

• “The Mathematical Theory of Communication” by C.E. Shannon (call no. TK5101 .S45 1949 —
Millikan Reserve): introduction to information theory.

• R. Landauer, Nature335779 (1988): where he reviews the idea of dissipation associated with memory
erasure.

• C.H. Bennett, IBM J. Res. Dev.32 16 (1988), “Notes on the history of reversible computation”

• W.H. Zurek, Phys. Rev.A40 4731 (1989): discusses algorithmic randomness.

• Feynman’s “Lectures on Physics”, Vol. 1, Ch.46: the thermal ratchet.

• “Maxwell’s Demon” by H.S. Leff and A.F. Rex: a good introduction and compilation of many of the
important papers (from 1874 on!). The first chapter is a nice historical review, and the book includes
reprints of the papers listed above, and useful additional ones by Landauer. Chapter 4 contains a
number of interesting papers by Bennett on the thermodynamics of computing. This book isn’t on
reserve, but you can borrow my copy (terms: must be returned to the bookshelf in Sloan Annex at
noon and 4 pm. everyday).
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