Collective Effects

in

Equilibrium and Nonequilibrium Physics

Website: http://cncs.bnu.edu.cn/mccross/Course/
Caltech Mirror: http://haides.caltech.edu/BNU/

Today's Lecture: Nonlinear Theory of Patterns near Onset

Outline

- Review: linear instability towards patterns
- Qualitative picture of nonlinear, spatially periodic patterns
- General Patterns Near Onset
\diamond One dimensional amplitude equation
\diamond Generalizations to two dimensions

Analogies to and differences from equilibrium phase transition to broken symmetry state

Review of Rayleigh-Bénard Instability

Linear Stability Analysis

- Driving strength: Rayleigh number $R \propto \Delta T$
- Look for linear mode $u, \theta \propto e^{\sigma(q) t} \cos (q x)$
- Calculate $\sigma(q)$ as a function of R
- $\sigma(q)>0$ indicates exponential growth, i.e., instability towards a pattern with periodicity $2 \pi / q$

Rayleigh's Growth Rate (for $\mathcal{P}=1$)

Parabolic approximation near maximum

For R near R_{c} and q near q_{c}

$$
\operatorname{Re} \sigma(q)=\tau_{0}{ }^{-1}\left[\varepsilon-\xi_{0}{ }^{2}\left(q-q_{c}\right)^{2}\right] \quad \text { with } \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Neutral stability curve

Re $\sigma(q)=0$ defines the neutral stability curve $R=R_{c}(q)$ or $q=q_{N}(R)$

$$
\text { Rayleigh : } \quad R_{c}(q)=\frac{\left(q^{2}+\pi^{2}\right)^{3}}{q^{2}}
$$

Linear Stability Analysis

Linear stability theory is often a useful first step in understanding pattern formation:

- Often is quite easy to do either analytically or numerically
- Displays the important physical processes
- Gives the length scale of the pattern formation $1 / q_{c}$

Linear Stability Analysis

Linear stability theory is often a useful first step in understanding pattern formation:

- Often is quite easy to do either analytically or numerically
- Displays the important physical processes
- Gives the length scale of the pattern formation $1 / q_{c}$

But:

- Leaves us with unphysical exponentially growing solutions

Linear Stability Analysis

Linear stability theory is often a useful first step in understanding pattern formation:

- Often is quite easy to do either analytically or numerically
- Displays the important physical processes
- Gives the length scale of the pattern formation $1 / q_{c}$

But:

- Leaves us with unphysical exponentially growing solutions

Nonlinear Theory

- Saturation of spatially periodic solution (bifurcation theory)
- General patterns (cf., broken symmetry at phase transitions)

Qualitative Picture of Nonlinear States

Qualitative Picture of Nonlinear States

Qualitative Picture of Nonlinear States

Qualitative Picture of Nonlinear States: Periodic BC

Qualitative Picture of Nonlinear States: Periodic BC

Qualitative Picture of Nonlinear States: Infinite System

Qualitative Picture of Nonlinear States

Qualitative Picture of Nonlinear States: Instability of Stripes

Qualitative Picture of Nonlinear States: Instability of Stripes

Qualitative Picture of Nonlinear States: Instability of Stripes

Qualitative Picture of Nonlinear States: Stability Balloon

Qualitative Picture of Nonlinear States: Stability Balloon

Tools for the Nonlinear Problem

- The instability to a pattern is another example of a broken symmetry transition, now in the context of nonequilibrium systems
- The same basic ideas we discussed in the context of equilibrium phase transitions apply:
\diamond near the transition $\left(R \simeq R_{c}, q \simeq q_{c}\right.$ or slow modulations of a pattern at $\left.q_{c}\right)$ describe the behavior using an order parameter
\diamond away from the transition use a phase variable description to describe the behavior resulting from the broken symmetry
- There will be similar general behavior:
\diamond new rigidity
\diamond Goldstone modes
\diamond importance of topological defects
- There will be important differences in formulation and behavior because we cannot start from a free energy, but must consider directly the dynamics

Amplitude Equations

Systematic approach for describing weakly nonlinear solutions near onset for solutions near a stripe state

Amplitude Equations

Linear onset solution for stripes

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned} \quad \begin{aligned}
& {\left[\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+\text { c.c. }} \\
& \\
& \text { Onset solution }
\end{aligned}
$$

Amplitude Equations

Linear onset solution for stripes

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned}
$$

Weakly nonlinear, slowly modulated, solution

$$
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \approx \underset{\text { Complex amplitude }}{A\left(\mathbf{x}_{\perp}, t\right)} \times \underset{ }{\left[\mathbf{u}_{\mathbf{q}_{c}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]}+\begin{gathered}
\text { Onset solution }
\end{gathered}
$$

Amplitude Equations

Linear onset solution for stripes

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned}
$$

Weakly nonlinear, slowly modulated, solution

$$
\left.\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \approx \underset{\text { Complex amplitude }}{A\left(\mathbf{x}_{\perp}, t\right)} \times \underset{ }{\left[\mathbf{u}_{\mathbf{q}_{c}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]} \text { Onset solution }\right)+ \text { c.c. }
$$

$A\left(\mathbf{x}_{\perp}, t\right)$ is the order parameter for the stripe state

Amplitude Equations

Linear onset solution for stripes

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned}
$$

Weakly nonlinear, slowly modulated, solution

$$
\left.\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \approx \underset{\text { Complex amplitude }}{A\left(\mathbf{x}_{\perp}, t\right)} \times \underset{ }{\left[\mathbf{u}_{\mathbf{q}_{c}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]}+\text { Onset solution }\right)+ \text { c.c. }
$$

$A\left(\mathbf{x}_{\perp}, t\right)$ is the order parameter for the stripe state
$A\left(\mathbf{x}_{\perp}, t\right)$ satisfies the amplitude equation.

Amplitude Equations

Linear onset solution for stripes

$$
\begin{aligned}
\delta \mathbf{u}_{\mathbf{q}}\left(\mathbf{x}_{\perp}, z, t\right)= & {\left[a_{0} e^{i\left(\mathbf{q}-\mathbf{q}_{c}\right) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t}\right] \times } \\
& \text { Small terms near onset }
\end{aligned} \times\left[\mathbf{u}_{\mathbf{q}}(z) e^{i \mathbf{q}_{c} \cdot \mathbf{x}_{\perp}}\right]+\text { c.c. } \quad \text { Onset solution }
$$

Weakly nonlinear, slowly modulated, solution

$$
\begin{aligned}
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) \approx & \begin{array}{c}
A\left(\mathbf{x}_{\perp}, t\right) \\
\text { Complex amplitude }
\end{array} \\
& \\
& \text { Onset solution }
\end{aligned}
$$

$A\left(\mathbf{x}_{\perp}, t\right)$ is the order parameter for the stripe state
$A\left(\mathbf{x}_{\perp}, t\right)$ satisfies the amplitude equation. In $1 \mathrm{~d}\left[\mathbf{q}_{c}=q_{c} \hat{\mathbf{x}}, A=A(x, t)\right]:$

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\left(R-R_{c}\right) / R_{c}
$$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase change $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase change $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase change $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!
- x-gradient $\partial_{x} \theta$ gives change of wave number $q=q_{c}+\partial_{x} \theta$
$A=a e^{i k x}$ corresponds to $q=q_{c}+k$

Complex Amplitude

Magnitude and phase of A play very different roles

$$
\begin{aligned}
A(x, y, t) & =a(x, y, t) e^{i \theta(x, y, t)} \\
\delta \mathbf{u}\left(\mathbf{x}_{\perp}, z, t\right) & =a e^{i \theta} \times e^{i q_{c} x} \mathbf{u}_{\mathbf{q}_{c}}(z)+c . c .
\end{aligned}
$$

- magnitude $a=|A|$ gives strength of disturbance
- phase change $\delta \theta$ gives shift of pattern (by $\delta x=\delta \theta / q_{c}$)— symmetry!
- x-gradient $\partial_{x} \theta$ gives change of wave number $q=q_{c}+\partial_{x} \theta$
$A=a e^{i k x}$ corresponds to $q=q_{c}+k$
- y-gradient $\partial_{y} \theta$ gives rotation of wave vector through angle $\partial_{y} \theta / q_{c}$ (plus $O\left[\left(\partial_{y} \theta\right)^{2}\right]$ change in wave number)

The amplitude equation describes

$$
\begin{aligned}
\tau_{0} \partial_{t} A= & \varepsilon A-g_{0}|A|^{2} A+\quad \xi_{0}^{2} \partial_{x}^{2} A \\
& \text { growth } \quad \text { saturation } \quad \text { dispersion/diffusion }
\end{aligned}
$$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$
- system specific constants τ_{0}, ξ_{0}, g_{0}

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$
- system specific constants τ_{0}, ξ_{0}, g_{0}
$\diamond \tau_{0}, \xi_{0}$ fixed by matching to linear growth rate $A=a e^{i \mathbf{k} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}$ gives pattern at $\mathbf{q}=\mathbf{q}_{c} \hat{x}+\mathbf{k}$)

$$
\sigma_{\mathbf{q}}=\tau_{0}{ }^{-1}\left[\varepsilon-\xi_{0}{ }^{2}\left(q-q_{c}\right)^{2}\right]
$$

Parameters

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

- control parameter $\varepsilon=\left(R-R_{c}\right) / R_{c}$
- system specific constants τ_{0}, ξ_{0}, g_{0}
$\diamond \tau_{0}$, ξ_{0} fixed by matching to linear growth rate $A=a e^{i \mathbf{k} \cdot \mathbf{x}_{\perp}} e^{\sigma_{\mathbf{q}} t}$ gives pattern at $\mathbf{q}=\mathbf{q}_{c} \hat{x}+\mathbf{k}$)

$$
\sigma_{\mathbf{q}}=\tau_{0}{ }^{-1}\left[\varepsilon-\xi_{0}{ }^{2}\left(q-q_{c}\right)^{2}\right]
$$

$\diamond g_{0}$ by calculating nonlinear state at small ε and $q=q_{c}$.

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

This reduces the amplitude equation to a universal form

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A}
$$

Scaling

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Introduce scaled variables

$$
\begin{aligned}
x & =\varepsilon^{-1 / 2} \xi_{0} X \\
t & =\varepsilon^{-1} \tau_{0} T \\
A & =\left(\varepsilon / g_{0}\right)^{1 / 2} \bar{A}
\end{aligned}
$$

This reduces the amplitude equation to a universal form

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A}
$$

Since solutions to this equation will develop on scales $X, Y, T, \bar{A}=O(1)$ this gives us scaling results for the physical length scales.

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Expand dynamical equation in powers of A and use symmetry arguments (cf., equilibrium phase transitions where we expand free energy).

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Expand dynamical equation in powers of A and use symmetry arguments (cf., equilibrium phase transitions where we expand free energy). Equation must be invariant under:
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A\left(\mathbf{x}_{\perp}\right) e^{i \Delta}$ with Δ a constant, corresponding to a physical translation
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A^{*}\left(-\mathbf{x}_{\perp}\right)$, corresponding to inversion of the horizontal coordinates (parity symmetry)

Derivation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A, \quad \varepsilon=\frac{R-R_{c}}{R_{c}}
$$

- Expand dynamical equation in powers of A and use symmetry arguments (cf., equilibrium phase transitions where we expand free energy). Equation must be invariant under:
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A\left(\mathbf{x}_{\perp}\right) e^{i \Delta}$ with Δ a constant, corresponding to a physical translation
$\diamond A\left(\mathbf{x}_{\perp}\right) \rightarrow A^{*}\left(-\mathbf{x}_{\perp}\right)$, corresponding to inversion of the horizontal coordinates (parity symmetry)
- Multiple scales perturbation theory (Newell and Whitehead, Segel 1969)
- Mode projection (MCC 1980)

Amplitude Equation $=$ Ginzburg Landau equation

$$
\tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2} \partial_{x}^{2} A-g_{0}|A|^{2} A,
$$

Familiar from other branches of physics:

- Good: take intuition from there
- Bad: no really new effects
e.g. equation is relaxational (potential, Lyapunov)

$$
\tau_{0} \partial_{t} A=-\frac{\delta V}{\delta A^{*}}, \quad V=\int d x\left[-\varepsilon|A|^{2}+\frac{1}{2} g_{0}|A|^{4}+\xi_{0}^{2}\left|\partial_{x} A\right|^{2}\right]
$$

This leads to

$$
\frac{d V}{d t}=-\tau_{0}^{-1} \int d x\left|\partial_{t} A\right|^{2} \leq 0
$$

and dynamics runs "down hill" to a minimum of V - no chaos!

- We have arrived at the same Landau type formulation with an effective "potential" or "free energy" V !
- This is not fundamental, and is "luck" resulting from our expansion in ε to lowest order
\diamond no effective potential at higher order
\diamond no effective potential for some side-wall boundary conditions
\diamond no effective potential for rotating convection (and there is chaos at onset!)

Applications

What we can calculate:

- Effect of distant sidewalls
- Eckhaus instability
- Propagation of pattern into no pattern region (e.g., from localized initial condition
- Evolution from random initial condition
- ...

Example: Effect of Distant Sidewalls

One dimensional geometry with sidewalls that suppress the pattern (e.g. rigid walls in a convection system)

$$
\bar{A}=e^{i \theta} \tanh (X / \sqrt{2})
$$

Example: Effect of Distant Sidewalls

One dimensional geometry with sidewalls that suppress the pattern (e.g. rigid walls in a convection system)

$$
\partial_{T} \bar{A}=\bar{A}+\partial_{X}^{2} \bar{A}-|\bar{A}|^{2} \bar{A} \quad \bar{A}(0)=0
$$

$$
\bar{A}=e^{i \theta} \tanh (X / \sqrt{2})
$$

Unscaled variables:

$$
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi) \quad \text { with } \quad \xi=\sqrt{2} \varepsilon^{-1 / 2} \xi_{0}
$$

Solution

$$
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi)
$$

- suppression of pattern over length $\varepsilon^{-1 / 2} \xi_{0}$
- arbitrary position of rolls
- asymptotic wave number is $k=0$, giving $q=q_{c}$: no band of existence

Solution

$$
A=e^{i \theta}\left(\varepsilon / g_{0}\right)^{1 / 2} \tanh (x / \xi)
$$

- suppression of pattern over length $\varepsilon^{-1 / 2} \xi_{0}$
- arbitrary position of rolls
- asymptotic wave number is $k=0$, giving $q=q_{c}$: no band of existence

Extended amplitude equation to next order in ε (MCC, Daniels, Hohenberg, and Siggia 1980) shows

- discrete set of roll positions
- solutions restricted to a narrow $O\left(\varepsilon^{1}\right)$ wave number band with wave number far from the wall

$$
\alpha_{-} \varepsilon<q-q_{c}<\alpha_{+} \varepsilon
$$

Electroconvection in a Smectic Film

V. B. Deyirmenjian, Z. A. Daya, and S. W. Morris (1997)

Electroconvection in a Smectic Film

From Morris et al. (1991) and Mao et al. (1996)

Onset in Systems with Rotational Symmetry

- Two dimensional amplitude equation for stripes
- Amplitude equations for lattice states
- Rotationally invariant "model equation"

Stripe state

Rotational symmetry: amplitude equation for stripes
For a 2 d , rotationally invariant system the gradient term is more complicated

$$
\begin{aligned}
& \tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2}\left(\partial_{x}-\frac{i}{2 q_{c}} \partial_{y}^{2}\right)^{2} A-g_{0}|A|^{2} A \\
& q-q_{c}=\sqrt{\left(q_{c}+Q_{x}\right)^{2}+Q_{y}^{2}}-q_{c} \approx Q_{x}+\frac{Q_{y}^{2}}{2 q_{c}}
\end{aligned}
$$

Rotational symmetry: amplitude equation for stripes
For a 2d, rotationally invariant system the gradient term is more complicated

$$
\begin{aligned}
& \tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2}\left(\partial_{x}-\frac{i}{2 q_{c}} \partial_{y}^{2}\right)^{2} A-g_{0}|A|^{2} A \\
& q-q_{c}=\sqrt{\left(q_{c}+Q_{x}\right)^{2}+Q_{y}^{2}}-q_{c} \approx Q_{x}+\frac{Q_{y}^{2}}{2 q_{c}}
\end{aligned}
$$

Note: the complex amplitude can only describe small reorientations of the stripes.

Rotational symmetry: amplitude equation for stripes
For a 2d, rotationally invariant system the gradient term is more complicated

$$
\begin{aligned}
& \tau_{0} \partial_{t} A=\varepsilon A+\xi_{0}^{2}\left(\partial_{x}-\frac{i}{2 q_{c}} \partial_{y}^{2}\right)^{2} A-g_{0}|A|^{2} A \\
& q-q_{c}=\sqrt{\left(q_{c}+Q_{x}\right)^{2}+Q_{y}^{2}}-q_{c} \approx Q_{x}+\frac{Q_{y}^{2}}{2 q_{c}}
\end{aligned}
$$

Note: the complex amplitude can only describe small reorientations of the stripes.
Isotropic system gives anisotropic scaling: $x=\varepsilon^{-1 / 2} \xi_{0} X ; y=\varepsilon^{-1 / 4}\left(\xi_{0} / q_{c}\right)^{1 / 2} Y$

Hexagonal state

Amplitude theory of hexagons

$$
1\|\| l \mid
$$

Amplitudes of rolls at 3 orientations $A_{i}(\mathbf{r}, t), i=1 \ldots 3$

$$
\begin{aligned}
& d A_{1} / d t=\varepsilon A_{1}-A_{1}\left(A_{1}^{2}+g A_{2}^{2}+g A_{3}^{2}\right)+\gamma A_{2} A_{3} \\
& d A_{2} / d t=\varepsilon A_{2}-A_{2}\left(A_{2}^{2}+g A_{3}^{2}+g A_{1}^{2}\right)+\gamma A_{3} A_{1} \\
& d A_{3} / d t=\varepsilon A_{3}-A_{3}\left(A_{3}^{2}+g A_{1}^{2}+g A_{2}^{2}\right)+\gamma A_{1} A_{2}
\end{aligned}
$$

- $A_{1} \neq 0, A_{2}=A_{3}=0$ gives stripes
- $A_{1}=A_{2}=A_{3} \neq 0$ gives hexagons

Amplitude theory of hexagons

Amplitudes of rolls at 3 orientations $A_{i}(\mathbf{r}, t), i=1 \ldots 3$

$$
\begin{aligned}
& d A_{1} / d t=\varepsilon A_{1}-A_{1}\left(A_{1}^{2}+g A_{2}^{2}+g A_{3}^{2}\right)+\gamma A_{2} A_{3} \\
& d A_{2} / d t=\varepsilon A_{2}-A_{2}\left(A_{2}^{2}+g A_{3}^{2}+g A_{1}^{2}\right)+\gamma A_{3} A_{1} \\
& d A_{3} / d t=\varepsilon A_{3}-A_{3}\left(A_{3}^{2}+g A_{1}^{2}+g A_{2}^{2}\right)+\gamma A_{1} A_{2}
\end{aligned}
$$

- $A_{1} \neq 0, A_{2}=A_{3}=0$ gives stripes
- $A_{1}=A_{2}=A_{3} \neq 0$ gives hexagons

For $A_{i} \rightarrow-A_{i}$ symmetry, $\gamma=0$ and stripes v. hexagons depends on g
For no $A_{i} \rightarrow-A_{i}$ symmetry, $\gamma \neq 0$ and always get hexagons at onset

Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar field $\psi(x, y, t)$ that captures the same physics as the amplitude equation

$$
\partial_{t} \psi=\left[\varepsilon-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3} \quad\left[\nabla_{\perp}=(\partial / \partial x, \partial / \partial y)\right]
$$

Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar field $\psi(x, y, t)$ that captures the same physics as the amplitude equation

$$
\partial_{t} \psi=\left[\varepsilon-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3} \quad\left[\nabla_{\perp}=(\partial / \partial x, \partial / \partial y)\right]
$$

- originally introduced to investigate universal aspects of the transition to stripes

Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar field $\psi(x, y, t)$ that captures the same physics as the amplitude equation

$$
\partial_{t} \psi=\left[\varepsilon-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3} \quad\left[\nabla_{\perp}=(\partial / \partial x, \partial / \partial y)\right]
$$

- originally introduced to investigate universal aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation

Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar field $\psi(x, y, t)$ that captures the same physics as the amplitude equation

$$
\partial_{t} \psi=\left[\varepsilon-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3} \quad\left[\nabla_{\perp}=(\partial / \partial x, \partial / \partial y)\right]
$$

- originally introduced to investigate universal aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation
- no systematic derivation: model rather than controlled approximation

Swift-Hohenberg Equation

Rotationally invariant formulation in terms of a scalar field $\psi(x, y, t)$ that captures the same physics as the amplitude equation

$$
\partial_{t} \psi=\left[\varepsilon-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3} \quad\left[\nabla_{\perp}=(\partial / \partial x, \partial / \partial y)\right]
$$

- originally introduced to investigate universal aspects of the transition to stripes
- later used to study qualitative aspects of stripe pattern formation
- no systematic derivation: model rather than controlled approximation
- equation is again relaxational

$$
\partial_{t} \psi=-\frac{\delta V}{\delta \psi}, \quad V=\iint d x d y\left\{-\frac{1}{2} \varepsilon \psi^{2}+\frac{1}{2}\left[\left(\nabla_{\perp}^{2}+1\right) \psi\right]^{2}+\frac{1}{4} \psi^{4}\right\}
$$

Motivation

- Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation (for $q \simeq q_{c}$)

$$
\dot{\psi}_{\mathbf{q}}=\tau_{0}^{-1}\left[\varepsilon-\xi_{0}^{2}\left(q-q_{c}\right)^{2}\right] \psi_{\mathbf{q}}
$$

- To be able to write this as a local equation for the Fourier $\operatorname{transform~} \psi(x, y, t)$ approximate this by

$$
\dot{\psi}_{\mathbf{q}}=\tau_{0}^{-1}\left[\varepsilon-\left(\xi_{0}^{2} / 4 q_{c}^{2}\right)\left(q^{2}-q_{c}^{2}\right)^{2}\right] \psi_{\mathbf{q}}
$$

- In real space this gives

$$
\tau_{0} \dot{\psi}(x, y, t)=\varepsilon \psi-\left(\xi_{0}^{2} / 4 q_{c}^{2}\right)\left(\nabla_{\perp}^{2}+q_{c}^{2}\right)^{2} \psi
$$

Simplest linear pde that gives the ring of unstable modes (for $\varepsilon>0$)

- Add simplest possible nonlinear saturating term

$$
\tau_{0} \dot{\psi}(x, y, t)=\varepsilon \psi-\left(\xi_{0}^{2} / 4 q_{c}^{2}\right)\left(\nabla_{\perp}^{2}+q_{c}^{2}\right)^{2} \psi-g_{0} \psi^{3}
$$

- Alternative motivation:

$$
A(x, y) e^{i q_{c} x} \Rightarrow \psi(x, y)
$$

Relaxation to steady state

(from Greenside and Coughran, 1984)

Coarsening in a periodic geometry

(From Elder, Vinals, and Grant 1992)

Generalized Swift-Hohenberg models

Qualitatively include other physics:

Generalized Swift-Hohenberg models

Qualitatively include other physics:

- break $\psi \rightarrow-\psi$ symmetry

$$
\partial_{t} \psi=\left[r-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi+\gamma \psi^{2}-\psi^{3}
$$

Generalized Swift-Hohenberg models

Qualitatively include other physics:

- break $\psi \rightarrow-\psi$ symmetry

$$
\partial_{t} \psi=\left[r-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi+\gamma \psi^{2}-\psi^{3}
$$

- change nonlinearity to make equation non-potential, e.g.

$$
\partial_{t} \psi=\left[r-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi+\left(\nabla_{\perp} \psi\right)^{2} \nabla_{\perp}^{2} \psi
$$

Generalized Swift-Hohenberg models

Qualitatively include other physics:

- break $\psi \rightarrow-\psi$ symmetry

$$
\partial_{t} \psi=\left[r-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi+\gamma \psi^{2}-\psi^{3}
$$

- change nonlinearity to make equation non-potential, e.g.

$$
\partial_{t} \psi=\left[r-\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi+\left(\nabla_{\perp} \psi\right)^{2} \nabla_{\perp}^{2} \psi
$$

- model effects of rotation

$$
\begin{aligned}
\partial_{t} \psi=[r- & \left.\left(\nabla_{\perp}^{2}+1\right)^{2}\right] \psi-\psi^{3}+ \\
& g_{2} \hat{\mathbf{z}} \cdot \nabla_{\perp} \times\left[\left(\nabla_{\perp} \psi\right)^{2} \nabla_{\perp} \psi\right]+g_{3} \nabla_{\perp} \cdot\left[\left(\nabla_{\perp} \psi\right)^{2} \nabla_{\perp} \psi\right]
\end{aligned}
$$

Conclusions

I have introduced the ideas and methods used to understand nonlinear patterns, focussing on the regime near threshold.

Next Lecture: Symmetry Aspects of Nonlinear Patterns

- Analogies with and differences from equilibrium phase transitions
- Phase variable description
- Topological defects

