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Today’s Lecture: Hydrodynamics

• Systematic equations for the time evolution of systems near
equilibrium

• Collective dynamics at low frequencies and long wavelengths of
conserved quantitiesandbroken symmetry variables

• Captures essential physics of new phases (Goldstone modes, etc.)
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Today’s Lecture: Hydrodynamics

• Systematic equations for the time evolution of systems near
equilibrium

• Collective dynamics at low frequencies and long wavelengths of
conserved quantitiesandbroken symmetry variables

• Captures essential physics of new phases (Goldstone modes, etc.)

• Outline

� Idea: two coupled systems

� Continuum systems

� Applications

? Spin wave hydrodynamics

? Equations of fluid dynamics and heat flow

� Equilibrium, near equilibrium, and far from equilibrium
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Equilibrium

Considern macroscopic variablesxi and generalized forcesXi appearing in the

thermodynamic identity as
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Equilibrium

Considern macroscopic variablesxi and generalized forcesXi appearing in the

thermodynamic identity as

dS= 1

T
d E + P

T
dV − µ

T
d N +

∑
i

Xi

T
dxi

• Thexi may be a quasi-conserved quantity (e.g. the partition of energy between two

weakly coupled subsystems) or related to a broken symmetry “angle” variable

• The generalized force conjugate to the variablexi is Xi = T(∂S/∂xi )E,x j 6=i ,....

• The force can also be writtenXi = −(∂E/∂xi )S,x j 6=i ,... = −(∂F/∂xi )T,x j 6=i ,..., etc.

• In the maximum entropy (microcanonical) or minimum free energy (canonical) state

the conjugate fields are zero

Xi = 0

and there is no dynamics.
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Example: Josephson Junction

Number N1 Number N2JN

Temperature T

Phase Θ1 Phase Θ2

T dS= · · · − 1µd N + 812

with

8 = −d EJ/d12

In the minimum free energy state1µ = 8 = 0 and there is no phase

dynamics or superflow
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Near Equilibrium - Summary

• Near equilibrium the dynamics can be expanded in the small forces

dxi

dt
= γi j X j

with γ thekinetic matrix
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Near Equilibrium - Summary

• Near equilibrium the dynamics can be expanded in the small forces

dxi

dt
= γi j X j

with γ thekinetic matrix

• Kinetic matrix may have nondissipative (reactive) and dissipative components

γ = γ r + γ d

• Kinetic matrix satisfiesOnsager symmetryrelationships

γi j = γ j i for xi , xj sametime reversal signature (e.g.N andT )

γi j = −γ j i for xi , xj oppositetime reversal signature (e.g.N and2)

• Second law of thermodynamics places constraints on the matrix elements,

e.g.γi i ≥ 0.

• Kinetic matrixγi j can be related to correlation matrix〈ẋi (0)ẋ j (t)〉 via the

fluctuation dissipation theorem
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Example: Thermoelectric Effect

Charge Q1 Charge Q2

JQ

Energy Ε1 Energy Ε2
JE

Two parts of an isolated system in contact via the exchange of energyE and chargeQ.

• Thermodynamic identity

T dS= −(1T/T) d E − 18 d Q

where18 is the voltage difference82 − 81 and1T = T2 − T1.
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Example: Thermoelectric Effect

Charge Q1 Charge Q2

JQ

Energy Ε1 Energy Ε2
JE

Two parts of an isolated system in contact via the exchange of energyE and chargeQ.

• Thermodynamic identity

T dS= −(1T/T) d E − 18 d Q

where18 is the voltage difference82 − 81 and1T = T2 − T1.

• Conjugate thermodynamic forces are−1T/T and−18.

• Equilibrium is given by the equality of temperature and electric potential,

1T = 18 = 0.
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Example: Thermoelectric Effect

Charge Q1 Charge Q2

JQ

Energy Ε1 Energy Ε2
JE

Relaxation of small perturbations from equilibrium is described by the equations for the

electric currentI and energy (heat) currentH

I = Q̇ = −γQQ18 − γQE1T/T

H = Ė = −γE Q18 − γE E1T/T
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Example: Thermoelectric Effect

Charge Q1 Charge Q2

JQ

Energy Ε1 Energy Ε2
JE

Relaxation of small perturbations from equilibrium is described by the equations for the

electric currentI and energy (heat) currentH

I = Q̇ = −γQQ18 − γQE1T/T

H = Ė = −γE Q18 − γE E1T/T

We would like to learn something about the coefficientsγ
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Onsager Symmetry Relations

• Derivation of the Onsager relationships depends on the relationship

between fluctuations and dissipation.

• First review fluctuations from a thermodynamic point of view.
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Fluctuations

• Microcanonical ensemble: probabilityp(xi ) of a fluctuation ofxi away from

equilibrium is given by the exponential of the entropy (divided bykB).
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Fluctuations

• Microcanonical ensemble: probabilityp(xi ) of a fluctuation ofxi away from

equilibrium is given by the exponential of the entropy (divided bykB).

• For macroscopic variables the fluctuations will be small, and we can expand the

entropy about its maximum. For ease of notation redefinexi so that its mean is zero.

S ≈ S0 − 1

2

n∑
i , j =1

βi j xi x j

and then

p({xi }) = Aexp


− 1

2kB

∑
i j

βi j xi x j




a Gaussian probability distribution.
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Fluctuations

• Microcanonical ensemble: probabilityp(xi ) of a fluctuation ofxi away from

equilibrium is given by the exponential of the entropy (divided bykB).

• For macroscopic variables the fluctuations will be small, and we can expand the

entropy about its maximum. For ease of notation redefinexi so that its mean is zero.

S ≈ S0 − 1

2

n∑
i , j =1

βi j xi x j

and then

p({xi }) = Aexp


− 1

2kB

∑
i j

βi j xi x j




a Gaussian probability distribution.

• The conjugate force is given by

Xi

T
= (∂S/∂xi ) = −

∑
j

βi j x j
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Equal Time Correlations

• The equal time correlations are

〈xi x j 〉 = kB(β−1)i j

〈Xi X j 〉 = kBT2βi j

〈xi X j 〉 = −kBTδi j

• The last result will be important below



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 21, 2006 10

Equal Time Correlations

• The equal time correlations are

〈xi x j 〉 = kB(β−1)i j

〈Xi X j 〉 = kBT2βi j

〈xi X j 〉 = −kBTδi j

• The last result will be important below

• The same results would be obtained by considering the free energy in

the canonical ensemble, etc.
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Correlation Functions: General Properties

Thecorrelation functiontells us how the fluctuations decay in time (putting〈xi 〉 = 0
again)

Ci j (t, t ′) = 〈xi (t)xj (t
′)〉.
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Correlation Functions: General Properties

Thecorrelation functiontells us how the fluctuations decay in time (putting〈xi 〉 = 0
again)

Ci j (t, t ′) = 〈xi (t)xj (t
′)〉.

• For time independent external conditionsCi j (t, t ′) only depends on the time
differenceτ = t ′ − t

Ci j (τ ) = 〈xi (t)xj (t + τ)〉 = 〈xi (0)xj (τ )〉.

• Also we have

Ci j (0) = 〈xi x j 〉
• Diagonal correlationsCii (τ ) are always less for nonzeroτ than forτ = 0. This is

deduced from the inequality

〈[xi (t) ± xi (t + τ)]2〉 ≥ 0

• Typically we expect the deviations from the mean to become uncorrelated at long
times

Ci j (τ → ±∞) → 0.
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• By shiftingthe time coordinate we can relate the correlation function

for negative times to the values for positive times

Ci j (−τ ) = 〈xi (t)xj (t − τ )〉 definition

= 〈xi (t + τ )xj (t)〉 addτ to t

giving

Ci j (−τ ) = Cji (τ )
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• By shiftingthe time coordinate we can relate the correlation function

for negative times to the values for positive times

Ci j (−τ ) = 〈xi (t)xj (t − τ )〉 definition

= 〈xi (t + τ )xj (t)〉 addτ to t

giving

Ci j (−τ ) = Cji (τ )

• In particular the diagonal correlation functions areevenfunctions of

time

Cii (τ ) = Cii (−τ )

• This result doesnot depend on issues oftime reversibilityof the

dynamical equations.
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Correlation Functions: Time Reversal Symmetry

For the common case in thermodynamics that the microscopic equations are time
reversible we can use time reversal symmetry to get further relationships.
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number… are unchanged under time reversal; momentum, superfluid phase… change
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For the common case in thermodynamics that the microscopic equations are time
reversible we can use time reversal symmetry to get further relationships.

The relationships depend on the time signature of the variablexi : positions, energies,
number… are unchanged under time reversal; momentum, superfluid phase… change
sign.

• If xi , xj have thesamesignature under time reversal

Ci j (τ ) = 〈xi (−t)xj (−t − τ)〉 time reversal

= 〈xi (t)xj (t − τ)〉 time shift by 2t

giving
Ci j (τ ) = Ci j (−τ)

and all the components are even functions ofτ .
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= 〈xi (t)xj (t − τ)〉 time shift by 2t

giving
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and all the components are even functions ofτ .
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Correlation Functions: Time Reversal Symmetry

For the common case in thermodynamics that the microscopic equations are time
reversible we can use time reversal symmetry to get further relationships.

The relationships depend on the time signature of the variablexi : positions, energies,
number… are unchanged under time reversal; momentum, superfluid phase… change
sign.

• If xi , xj have thesamesignature under time reversal

Ci j (τ ) = 〈xi (−t)xj (−t − τ)〉 time reversal

= 〈xi (t)xj (t − τ)〉 time shift by 2t

giving
Ci j (τ ) = Ci j (−τ)

and all the components are even functions ofτ .

• If xi , xj haveoppositesignatures under time reversal

Ci j (τ ) = −Ci j (−τ)

From the fluctuation-dissipation theorem we can expect that this gives symmetry results
for the kinetic matrix (dissipation)
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Onsager Symmetry Relation: Derivation

• Consider the correlation function of the fluctuations about equilibrium (remember

we have set things up so〈xi 〉 = 0)

Ci j (τ ) = 〈xi (t)xj (t + τ)〉
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• Consider the correlation function of the fluctuations about equilibrium (remember

we have set things up so〈xi 〉 = 0)
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〈xi (t)xj (t + τ)〉 = 〈xi (t + τ)xj (t)〉
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• Differentiating the two expressions w.r.t.τ and afterwards puttingτ → 0 gives
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Onsager Symmetry Relation: Derivation

• Consider the correlation function of the fluctuations about equilibrium (remember

we have set things up so〈xi 〉 = 0)

Ci j (τ ) = 〈xi (t)xj (t + τ)〉

• For variablesxi have the same symmetry under time reversal we have shown

Ci j (τ ) = Ci j (−τ)

〈xi (t)xj (t + τ)〉 = 〈xi (t + τ)xj (t)〉
• Differentiating the two expressions w.r.t.τ and afterwards puttingτ → 0 gives

〈xi (t)ẋ j (t)〉 = 〈ẋi (t)xj (t)〉

• Using the Onsager regression hypothesis this can be written

γ jk〈xi Xk〉 = γik〈Xkxj 〉

• Using〈xi Xk〉 ∝ δik this gives

γ j i = γi j
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Onsager Symmetry Relation: Result
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• We have proved that the kinetic matrix issymmetric. This is known as

the Onsager symmetry relation.

• This result applies ifxi andxj have thesamebehavior under time

reversal; if they have theoppositebehavior, e.g., one a velocity and

one a displacement, a similar argument givesγ j i = −γi j .



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 21, 2006 15

Onsager Symmetry Relation: Result

• We have proved that the kinetic matrix issymmetric. This is known as

the Onsager symmetry relation.

• This result applies ifxi andxj have thesamebehavior under time

reversal; if they have theoppositebehavior, e.g., one a velocity and

one a displacement, a similar argument givesγ j i = −γi j .

• Another way to get this result is from the fluctuation dissipation

theorem proved in lecture 5. From those results it can be shown

γi j = 1

kBT

∫ 0

−∞
〈ẋi (t)ẋ j (t + τ )〉dτ

and the Onsager relation follows.
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Other Constraints

There are other constraints on the kinetic matrixγ that arise from the requirement of the
increase in entropy approaching equilibrium.
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Other Constraints

There are other constraints on the kinetic matrixγ that arise from the requirement of the
increase in entropy approaching equilibrium.

• The rate of change of entropy is given by

T Ṡ =
∑

i

Xi ẋi =
∑
i j

Xi γi j X j

The i j terms such thatγ is antisymmetric (i.e.xi andxj of opposite time reversal
signature) drop out from the sum—these are the reactive terms.
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Other Constraints

There are other constraints on the kinetic matrixγ that arise from the requirement of the
increase in entropy approaching equilibrium.

• The rate of change of entropy is given by

T Ṡ =
∑

i

Xi ẋi =
∑
i j

Xi γi j X j

The i j terms such thatγ is antisymmetric (i.e.xi andxj of opposite time reversal
signature) drop out from the sum—these are the reactive terms.

• Summing overi, j even and odd time reversal signature separately

T Ṡ =
∑

i , j even

Xi γ
(e)
i j X j +

∑
i , j odd

Xi γ
(o)
i j X j .
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Other Constraints

There are other constraints on the kinetic matrixγ that arise from the requirement of the
increase in entropy approaching equilibrium.

• The rate of change of entropy is given by

T Ṡ =
∑

i

Xi ẋi =
∑
i j

Xi γi j X j

The i j terms such thatγ is antisymmetric (i.e.xi andxj of opposite time reversal
signature) drop out from the sum—these are the reactive terms.

• Summing overi, j even and odd time reversal signature separately

T Ṡ =
∑

i , j even

Xi γ
(e)
i j X j +

∑
i , j odd

Xi γ
(o)
i j X j .

• Positive entropy production for anyXi placesconstraintson theγ (e), γ (o) matrices

γ
(e)
i i ≥ 0

γ
(e)
i j ≤

√
γ

(e)
i i γ

(e)
j j

and similar results forγ (o)
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Thermoelectric Effect: Results

I = Q̇ = −γQQ18 − γE Q1T/T

H = Ė = −γE Q18 − γE E1T/T
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I = Q̇ = −γQQ18 − γE Q1T/T
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• Seebeck effect:voltage from a temperature difference with no current

18 = −
(
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γE Q
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)
1T
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Thermoelectric Effect: Results

I = Q̇ = −γQQ18 − γE Q1T/T

H = Ė = −γE Q18 − γE E1T/T

• Seebeck effect:voltage from a temperature difference with no current

18 = −
(

1

T

γE Q

γQQ

)
1T

• Peltier effect: heat current from an electric current with no temperature difference

H =
(

γE Q

γQQ

)
I
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Thermoelectric Effect: Results

I = Q̇ = −γQQ18 − γE Q1T/T

H = Ė = −γE Q18 − γE E1T/T

• Seebeck effect:voltage from a temperature difference with no current

18 = −
(

1

T

γE Q

γQQ

)
1T

• Peltier effect: heat current from an electric current with no temperature difference

H =
(

γE Q

γQQ

)
I

• Onsager relation provides a simple relationship between the Seebeck and Peltier

coefficients.

• Second law requiresγE Q ≤ √
γQQγE E so that the electrical and thermal

conductances limit the magnitude of the thermoelectric effects.
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Continuum Systems

Thermodynamic identity

T ds= dε − µdn +
∑

i

Xi dξi

or in terms of the free energy

d f = −sdT + µdn −
∑

i

Xi dξi

with s, ε, ξi the corresponding densities of conserved quantities or

gradients of angle variables, e.g. for the superfluid

T ds= dε − µdn + js · dvs

with vs = (h̄/m)∇2 andjs = ns(h̄/m)∇2 the supercurrent.
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the conjugate fieldsT, µ, Xi are spatially uniform and there is no dynamics.
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• In the maximum entropy (microcanonical) or minimum free energy (canonical) state
the conjugate fieldsT, µ, Xi are spatially uniform and there is no dynamics.

• For deviations from this state

∂ξi /∂t + ∇ · j i = 0 ξi conserved quantity or gradient of angle

• Currentsj i may have nondissipative (reactive) component and dissipative
components

j i = j r + jd

e.g. for the supercurrent in a superfluidj r = −µ/m and for the density in a normal
fluid j r = g

• The dissipative currentsjd are zero in equilibrium and near equilibrium can be
expanded in gradients of the conjugate fields

jd
i =

∑
j

γ i j · ∇X j

• Physical symmetries of the system restrict which terms inγ may be nonzero

• Kinetic matrixγ satisfies theOnsager symmetryconditions

• Positive entropy production placesconstraintson the coefficientsγ



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 21, 2006 20

Examples of Applications

1. Hydrodynamic theory of spin waves

2. Heat and mass flow in a fluid
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Hydrodynamics Theory of Spin Waves

Sz

S⊥⊥⊥⊥

Θ

Thermodynamic identity

T ds= dε − µzdsz − 8 · d(∇2) with 8 = K∇2

Phase dynamics

2̇ = µz + hd
z with hd

z = 0 in uniform state
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T ds= dε − µzdsz − 8 · d(∇2) with 8 = K∇2

Phase dynamics
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• Form time derivative of entropy density, using conservation laws and phase dynamics

ds
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= − 1

T
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∇ · jsz − 8
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·∇(µz + hd
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Hydrodynamics Theory of Spin Waves

Sz

S⊥⊥⊥⊥

Θ

Thermodynamic identity

T ds= dε − µzdsz − 8 · d(∇2) with 8 = K∇2

Phase dynamics

2̇ = µz + hd
z with hd

z = 0 in uniform state

• Form time derivative of entropy density, using conservation laws and phase dynamics

ds

dt
= − 1

T
∇ · j ε + µz

T
∇ · jsz − 8

T
·∇(µz + hd

z)

• Entropy production equation

ds

dt
= −∇·js + R with R ≥ 0

with the entropy current and production

js = T−1(j ε − µzjsz + 8hd
z)

RT = −T−1js · ∇T − (jsz + 8)·∇µz + hd
z ∇ · 8
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Dynamics

Entropy Production

RT = −T−1js · ∇T − (jsz + 8)·∇µz + hd
z ∇ · 8



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:April 21, 2006 22

Dynamics

Entropy Production

RT = −T−1js · ∇T − (jsz + 8)·∇µz + hd
z ∇ · 8

Expand dissipative parts ofjs, jsz, hd
z in gradients of conjugate fields

∇T, ∇µz, ∇ · 8
jsz = −8 − D∇µz

hd
z = ζ∇ · 8
js = −T−1K∇T

(Off-diagonal terms are absent by mirror and time symmetries)
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Dynamics

Entropy Production

RT = −T−1js · ∇T − (jsz + 8)·∇µz + hd
z ∇ · 8

Expand dissipative parts ofjs, jsz, hd
z in gradients of conjugate fields

∇T, ∇µz, ∇ · 8
jsz = −8 − D∇µz

hd
z = ζ∇ · 8
js = −T−1K∇T

(Off-diagonal terms are absent by mirror and time symmetries)

For positive entropy productionD, ζ, K must be positive
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Spin Waves

CoupledSz, 2 equations

Ṡz = K∇22 + χ−1D∇2Sz

2̇ = χ−1Sz + K ζ∇22
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Spin Waves

CoupledSz, 2 equations

Ṡz = K∇22 + χ−1D∇2Sz

2̇ = χ−1Sz + K ζ∇22

The dispersion relation now gives adampedwave

ω = ±ck − 1
2iγ k2 + O(k4)

with c = √
K/χ andγ = χ−1D + K ζ
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Equations of Fluid Motion and Heat Transfer

Thermodynamic identity (ε, s are per mass)

dε = T ds+ p

ρ2
dρ + v · dg

Mass conservation (LL1.2)

∂ρ

∂t
+ ∇ · g = 0 with g = ρv

Momentum conservation (LL15.1)

∂(ρv)

∂t
+ ∇ · 5 = 0 or

∂(ρvi )

∂t
+ ∇ j 5i j = 0

with (LL15.3)

5i j = pδi j + ρvi v j − η

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)
− ζ δi j

∂vi

∂xi

Entropy production (LL49.5-6)

∂(ρs)

∂t
+ ∇ · (ρsv− K

T
∇T) = K (∇T)2

T2
+ η

2T

(
∂vi

∂xj
+ ∂v j

∂xi
− 2

3
δi j

∂vi

∂xi

)2

+ ζ

T

(
∂vi

∂xi

)2
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Equilibrium, Near Equilibrium, and Far from Equilibrium
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Equilibrium v. Nonequilibrium

Temperature T

System

Equilibrium
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Equilibrium v. Nonequilibrium

Temperature T1

Temperature T2

System
JE

Nonequilibrium
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Equilibrium v. Nonequilibrium

Velocity v

Velocity v

System

Equilibrium
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Equilibrium v. Nonequilibrium

Velocity v1

Velocity v2

System
JG

Nonequilibrium
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Equilibrium - Far From Equilibrium

Equilibrium

Perturbations
decay

∆T
D

riv
in

g
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Equilibrium - Far From Equilibrium

Equilibrium

Perturbations
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Equilibrium - Far From Equilibrium

Equilibrium

Perturbations
decay

Perturbations
grow

∆T

∆Tc

D
riv

in
g

Far from equilibrium
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Far From Equilibrium

• A macroscopic system may be globally far from equilibrium, but have

small gradients of the thermodynamic fields so that locally it is near

equilibrium
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Far From Equilibrium

• A macroscopic system may be globally far from equilibrium, but have

small gradients of the thermodynamic fields so that locally it is near

equilibrium

• Such a system may be treated with the systematic hydrodynamic

equations that can be derived from basic thermodynamics with

Onsager’s extensions

• These systems allow a quantitative understanding of phenomenon far

from equilibrium

• Other systems far from equilibrium may not be near local equilibrium,

e.g. biology, chemistry. For these quantitative descriptions are harder.


