Collective Effects

in

Equilibrium and Nonequilibrium Physics

Website: http://cncs.bnu.edu.cn/mccross/Course/

Caltech Mirror: http://haides.caltech.edu/BNU/

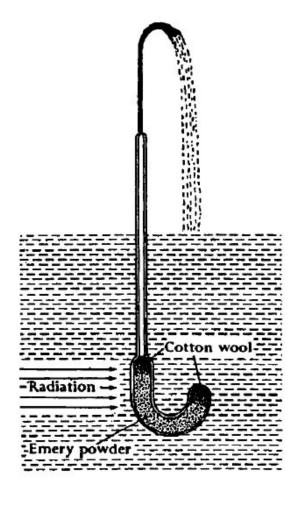
Today's Lecture

Superfluids and superconductors

- What are superfluidity and superconductivity?
- Review of phase dynamics
- Description in terms of a macroscopic phase
- Supercurrents that flow for ever
- Josephson effect
- Four sounds

The Amazing World of Superfluidity and Superconductivity

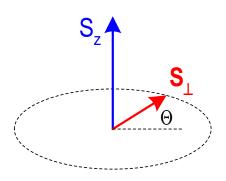
- Electric currents in loops that flow for ever (measured for \sim decade)
- Beakers of fluid that empty themselves
- Fluids that flow without resistance through tiny holes
- Flow in surface films less than an atomic layer thick
- Flow driven by temperature differences (fountain effect)



History of Superfluidity and Superconductivity

- **1908** Liquefaction of ⁴He by Kamerlingh Onnes
- **1911** Discovery of superconductivity by Onnes (resistance drops to zero)
- 1933 Meissner effect: superconductors expel magnetic field
- **1937** Discovery of superfluidity in ⁴He by Allen and Misener
- 1938 Connection of superfluidity with Bose-Einstein condensation by London
- **1955** Feynman's theory of quantized vortices
- 1956 Onsager and Penrose identify the broken symmetry in superfluidity ODLRO
- **1957** BCS theory of superconductivity
- **1962** Josephson effect
- 1973 Discovery of superfluidity in ³He at 2mK by Osheroff, Lee, and Richardson
- **1986** Discovery of high-T_c superconductors by Bednorz and Müller
- **1995-** Study of superfluidity in ultracold trapped dilute gases

Review of Phase Dynamics with a Conserved Quantity



Rotational symmetry in the XY plane (angle Θ)

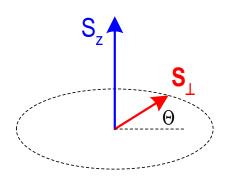
The XY and Z components of the spin have different properties:

$$S_z = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle s_{iz} \rangle$$
 is a conserved quantity
 $\mathbf{S}_{\perp} = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle \mathbf{s}_{i\perp} \rangle$ is the XY order parameter

$$\mathbf{S}_{\perp} = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle \mathbf{s}_{i \perp} \rangle$$
 is the XY order parameter

Back **Forward**

Review of Phase Dynamics with a Conserved Quantity



Rotational symmetry in the XY plane (angle Θ)

The XY and Z components of the spin have different properties:

$$S_z = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle s_{iz} \rangle$$
 is a conserved quantity $\mathbf{S}_{\perp} = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle \mathbf{s}_{i\perp} \rangle$ is the XY order parameter

 S_z and Θ are canonically conjugate variables, so that with the free energy

$$F = \int d^d x \left[\frac{1}{2} K(\nabla \Theta)^2 + \frac{S_z^2}{2\chi} - S_z b_z \right]$$

we get

$$\dot{S}_z = -\frac{\delta F}{\delta \Theta}$$
 giving $\dot{S}_z = -\nabla \cdot \mathbf{j}_{S_z}$ with $\mathbf{j}_{S_z} = -K\nabla\Theta$
 $\dot{\Theta} = \frac{\delta F}{\delta S_z}$ giving $\dot{\Theta} = \chi^{-1}(S_z - \chi b_z)$

Spin Current

$$\dot{S}_z = -\nabla \cdot \mathbf{j}_{S_z}$$

Spin Current

$$\dot{S}_z = -\nabla \cdot \mathbf{j}_{S_z}$$

This is a conservation law with a current \mathbf{j}_{S_z} of the conserved quantity S_z given by a phase gradient

$$\mathbf{j}_{S_z} = -K\nabla\Theta$$

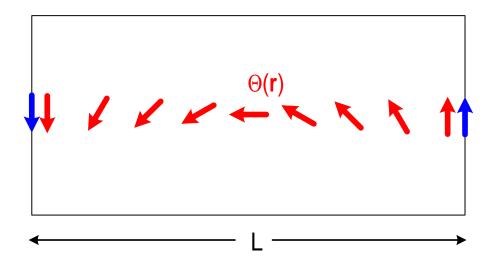
Spin Current

$$\dot{S}_z = -\nabla \cdot \mathbf{j}_{S_z}$$

This is a conservation law with a current \mathbf{j}_{S_z} of the conserved quantity S_z given by a phase gradient

$$\mathbf{j}_{S_z} = -K\nabla\Theta$$

For example



$$\dot{\Theta} = \chi^{-1} (S_z - \chi b_z)$$

$$\dot{\Theta} = \chi^{-1}(S_z - \chi b_z)$$

• No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$

$$\dot{\Theta} = \chi^{-1}(S_z - \chi b_z)$$

- No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$
- Add an additional external field $b_{1z} = \gamma B_{1z}$

$$\dot{\Theta} = -b_{1z} = -\gamma B_{1z}$$

the usual precession of a magnetic moment in an applied field (Larmor precession).

$$\dot{\Theta} = \chi^{-1}(S_z - \chi b_z)$$

- No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$
- Add an additional external field $b_{1z} = \gamma B_{1z}$

$$\dot{\Theta} = -b_{1z} = -\gamma B_{1z}$$

the usual precession of a magnetic moment in an applied field (Larmor precession).

• Note that this is an equilibrium state: $S_z \neq \chi(b_{0z} + b_{1z})$ but is a conserved quantity

$$\dot{\Theta} = \chi^{-1} (S_z - \chi b_z)$$

- No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$
- Add an additional external field $b_{1z} = \gamma B_{1z}$

$$\dot{\Theta} = -b_{1z} = -\gamma B_{1z}$$

the usual precession of a magnetic moment in an applied field (Larmor precession).

• Note that this is an equilibrium state: $S_z \neq \chi(b_{0z} + b_{1z})$ but is a conserved quantity— no approximations

$$\dot{\Theta} = \chi^{-1} (S_z - \chi b_z)$$

- No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$
- Add an additional external field $b_{1z} = \gamma B_{1z}$

$$\dot{\Theta} = -b_{1z} = -\gamma B_{1z}$$

the usual precession of a magnetic moment in an applied field (Larmor precession).

- Note that this is an equilibrium state: $S_z \neq \chi(b_{0z} + b_{1z})$ but is a conserved quantity— no approximations
- For formal proof see Halperin and Saslow,
 Phys. Rev. B 16, 2154 (1977), Appendix: "the Larmor precession theorem"

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved quantities and broken symmetry variables in a thermodynamic approach

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved quantities and broken symmetry variables in a thermodynamic approach

Starting points

• generalized rigidity: extra contribution to the energy density from gradients of the broken symmetry variable

• thermodynamic identity

• equilibrium phase dynamics (Larmor precession theorem)

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved quantities and broken symmetry variables in a thermodynamic approach

Starting points

• generalized rigidity: extra contribution to the energy density from gradients of the broken symmetry variable

$$\varepsilon = \frac{1}{2}K(\nabla\Theta)^2$$

• thermodynamic identity

$$d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$
 with

• equilibrium phase dynamics (Larmor precession theorem)

$$\dot{\Theta} = \mu_z$$

Hydrodynamics: a formal derivation of long wavelength dynamics of conserved quantities and broken symmetry variables in a thermodynamic approach

Starting points

• generalized rigidity: extra contribution to the energy density from gradients of the broken symmetry variable

$$\varepsilon = \frac{1}{2}K(\nabla\Theta)^2$$

• thermodynamic identity

$$d\varepsilon = Tds + \mu_{\tau}ds_{\tau} + \Phi \cdot d(\nabla \Theta)$$
 with

• equilibrium phase dynamics (Larmor precession theorem)

$$\dot{\Theta} = \mu_z$$

Derive

• dynamical equations for conserved quantities and broken symmetry variables for slowly varying disturbances

Rigidity and the Thermodynamic Identity

In terms of the energy density

$$d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• conjugate fields are

$$\mu_z = \left(\frac{\partial \varepsilon}{\partial s_z}\right)_{s,\nabla\Theta}$$
 and $\Phi = \left(\frac{\partial \varepsilon}{\partial \nabla\Theta}\right)_{s,\mathbf{s}_z}$

Rigidity and the Thermodynamic Identity

In terms of the energy density

$$d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• *conjugate fields* are

$$\mu_z = \left(\frac{\partial \varepsilon}{\partial s_z}\right)_{s,\nabla\Theta}$$
 and $\Phi = \left(\frac{\partial \varepsilon}{\partial \nabla\Theta}\right)_{s,\mathbf{s}_z}$

Or with the free energy density $f = \varepsilon - Ts$

$$df = -sdT + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• *conjugate fields* are

$$\mu_z = \left(\frac{\partial f}{\partial s_z}\right)_{T,\nabla\Theta}$$
 and $\Phi = \left(\frac{\partial f}{\partial \nabla\Theta}\right)_{T,\mathbf{s}_z}$

Rigidity and the Thermodynamic Identity

In terms of the energy density

$$d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• *conjugate fields* are

$$\mu_z = \left(\frac{\partial \varepsilon}{\partial s_z}\right)_{s,\nabla\Theta}$$
 and $\Phi = \left(\frac{\partial \varepsilon}{\partial \nabla\Theta}\right)_{s,\mathbf{s}_z}$

Or with the free energy density $f = \varepsilon - Ts$

$$df = -sdT + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• *conjugate fields* are

$$\mu_z = \left(\frac{\partial f}{\partial s_z}\right)_{T,\nabla\Theta}$$
 and $\Phi = \left(\frac{\partial f}{\partial \nabla\Theta}\right)_{T,\mathbf{s}_z}$

These give

$$\mu_z = \chi^{-1}(S_z - \chi b_z)$$
 and $\Phi = K \nabla \Theta$

$$Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$$

$$Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$$

• Form time derivative of entropy density

$$\frac{ds}{dt} = \frac{1}{T}\frac{d\varepsilon}{dt} - \frac{\mu_z}{T}\frac{ds_z}{dt} - \frac{\Phi}{T} \cdot \frac{d(\nabla\Theta)}{dt}$$

$$Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$$

• Form time derivative of entropy density

$$\frac{ds}{dt} = \frac{1}{T}\frac{d\varepsilon}{dt} - \frac{\mu_z}{T}\frac{ds_z}{dt} - \frac{\Phi}{T} \cdot \frac{d(\nabla\Theta)}{dt}$$

• Conservation laws and dynamics of broken symmetry variable (\mathbf{j}^{ε} , \mathbf{j}^{s_z} unknown)

$$\frac{ds}{dt} = -\frac{1}{T}\nabla \cdot \mathbf{j}^{\varepsilon} + \frac{\mu_z}{T}\nabla \cdot \mathbf{j}^{s_z} - \frac{\Phi}{T} \cdot \nabla \mu_z$$

$$Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$$

• Form time derivative of entropy density

$$\frac{ds}{dt} = \frac{1}{T}\frac{d\varepsilon}{dt} - \frac{\mu_z}{T}\frac{ds_z}{dt} - \frac{\Phi}{T} \cdot \frac{d(\nabla\Theta)}{dt}$$

• Conservation laws and dynamics of broken symmetry variable (\mathbf{j}^{ε} , \mathbf{j}^{s_z} unknown)

$$\frac{ds}{dt} = -\frac{1}{T}\nabla \cdot \mathbf{j}^{\varepsilon} + \frac{\mu_z}{T}\nabla \cdot \mathbf{j}^{s_z} - \frac{\Phi}{T} \cdot \nabla \mu_z$$

Entropy production equation

$$\frac{ds}{dt} = -\nabla \cdot \mathbf{j}^s + R \qquad \text{with} \qquad R \ge 0$$

$$Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$$

Form time derivative of entropy density

$$\frac{ds}{dt} = \frac{1}{T}\frac{d\varepsilon}{dt} - \frac{\mu_z}{T}\frac{ds_z}{dt} - \frac{\Phi}{T} \cdot \frac{d(\nabla\Theta)}{dt}$$

• Conservation laws and dynamics of broken symmetry variable (\mathbf{j}^{ε} , \mathbf{j}^{s_z} unknown)

$$\frac{ds}{dt} = -\frac{1}{T}\nabla \cdot \mathbf{j}^{\varepsilon} + \frac{\mu_z}{T}\nabla \cdot \mathbf{j}^{s_z} - \frac{\Phi}{T} \cdot \nabla \mu_z$$

Entropy production equation

$$\frac{ds}{dt} = -\nabla \cdot \mathbf{j}^s + R \qquad \text{with} \qquad R \ge 0$$

• Identify the entropy current and production

$$\mathbf{j}^{s} = T^{-1}(\mathbf{j}^{\varepsilon} - \mu_{z}\mathbf{j}^{s_{z}})$$

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_{z}\mathbf{j}^{s_{z}}) \cdot \nabla T - (\mathbf{j}^{s_{z}} + \Phi) \cdot \nabla \mu_{z}$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables)

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

• Energy current

$$\mathbf{j}^{\varepsilon} = \mu_z \mathbf{j}^{s_z}$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

• Energy current

$$\mathbf{j}^{\varepsilon} = \mu_z \mathbf{j}^{s_z} = -\mu_z K \nabla \Theta$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

• Energy current

$$\mathbf{j}^{\varepsilon} = \mu_z \mathbf{j}^{s_z} = -\mu_z K \nabla \Theta$$

• Entropy current

$$\mathbf{j}^s = 0$$

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

• Energy current

$$\mathbf{j}^{\varepsilon} = \mu_z \mathbf{j}^{s_z} = -\mu_z K \nabla \Theta$$

• Entropy current

$$\mathbf{j}^s = 0$$

We will consider adding dissipation later.

Superfluidity

• superfluidity occurs due to Bose condensation

- superfluidity occurs due to Bose condensation
- the order parameter is "the expectation value of the quantum field operator for destroying a particle" $\Psi = \langle \psi \rangle$

- superfluidity occurs due to Bose condensation
- the order parameter is "the expectation value of the quantum field operator for destroying a particle" $\Psi = \langle \psi \rangle$
- Ψ is a complex variable: $\Psi = |\Psi|e^{i\Theta}$

- superfluidity occurs due to Bose condensation
- the order parameter is "the expectation value of the quantum field operator for destroying a particle" $\Psi = \langle \psi \rangle$
- Ψ is a complex variable: $\Psi = |\Psi|e^{i\Theta}$
 - $\Rightarrow |\Psi|^2$ gives the "condensate density" n_0 : the fraction of particles in the zero momentum state is n_0/n
 - \diamond Θ is the phase of the condensate wave function

- superfluidity occurs due to Bose condensation
- the order parameter is "the expectation value of the quantum field operator for destroying a particle" $\Psi = \langle \psi \rangle$
- Ψ is a complex variable: $\Psi = |\Psi|e^{i\Theta}$
 - $\Rightarrow |\Psi|^2$ gives the "condensate density" n_0 : the fraction of particles in the zero momentum state is n_0/n
 - $\diamond \Theta$ is the phase of the condensate wave function
 - ♦ There are a macroscopic number of particles in a single wave function and so ⊕ is a macroscopic thermodynamic variable, and is the broken symmetry variable.

• Any phase gives an equivalent state; the ordered state is characterized by a particular phase

- Any phase gives an equivalent state; the ordered state is characterized by a particular phase
- There is an energy cost for gradients of the phase

$$E = \frac{1}{2} n_s \frac{\hbar^2}{m} \int (\nabla \Theta)^2 d^d x$$

- \diamond Stiffness constant K is written as $n_s(\hbar^2/m)$ and n_s is called the superfluid density
- \diamond Stiffness constant *not* the same as the condensate density $n_s \neq n_0$

- Any phase gives an equivalent state; the ordered state is characterized by a particular phase
- There is an energy cost for gradients of the phase

$$E = \frac{1}{2} n_s \frac{\hbar^2}{m} \int (\nabla \Theta)^2 d^d x$$

- \diamond Stiffness constant K is written as $n_s(\hbar^2/m)$ and n_s is called the superfluid density
- \diamond Stiffness constant *not* the same as the condensate density $n_s \neq n_0$
- Conjugate variable to the phase Θ is the number of particles N

- Any phase gives an equivalent state; the ordered state is characterized by a particular phase
- There is an energy cost for gradients of the phase

$$E = \frac{1}{2} n_s \frac{\hbar^2}{m} \int (\nabla \Theta)^2 d^d x$$

- \diamond Stiffness constant K is written as $n_s(\hbar^2/m)$ and n_s is called the superfluid density
- \diamond Stiffness constant *not* the same as the condensate density $n_s \neq n_0$
- Conjugate variable to the phase Θ is the number of particles N
- Currents and dynamics of the phase are coupled to the density, i.e., mass or electric currents

- Any phase gives an equivalent state; the ordered state is characterized by a particular phase
- There is an energy cost for gradients of the phase

$$E = \frac{1}{2} n_s \frac{\hbar^2}{m} \int (\nabla \Theta)^2 d^d x$$

- \diamond Stiffness constant K is written as $n_s(\hbar^2/m)$ and n_s is called the superfluid density
- \diamond Stiffness constant *not* the same as the condensate density $n_s \neq n_0$
- Conjugate variable to the phase Θ is the number of particles N
- Currents and dynamics of the phase are coupled to the density, i.e., mass or electric currents
- Currents are present in equilibrium, and so are supercurrents

• One-to-one correspondence at the quantum operator level

$$\hbar N \equiv S_z$$
 and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$

(e.g.,
$$\uparrow \equiv$$
 particle, $\downarrow \equiv$ no particle)

• One-to-one correspondence at the quantum operator level

$$\hbar N \equiv S_z$$
 and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$

(e.g., $\uparrow \equiv$ particle, $\downarrow \equiv$ no particle)

• Gradient of the phase gives a flow of particles

$$\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{j} \qquad \text{with} \qquad \mathbf{j} = n_s(\hbar/m) \nabla \Theta$$

• One-to-one correspondence at the quantum operator level

$$\hbar N \equiv S_z$$
 and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$

(e.g., $\uparrow \equiv$ particle, $\downarrow \equiv$ no particle)

• Gradient of the phase gives a flow of particles

$$\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{j} \qquad \text{with} \qquad \mathbf{j} = n_s(\hbar/m) \nabla \Theta$$

• Often associate a flow with a velocity: introduce superfluid velocity $\mathbf{v}_s = (\hbar/m)\nabla\Theta$

One-to-one correspondence at the quantum operator level

$$\hbar N \equiv S_z$$
 and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$

(e.g., $\uparrow \equiv$ particle, $\downarrow \equiv$ no particle)

• Gradient of the phase gives a flow of particles

$$\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{j} \qquad \text{with} \qquad \mathbf{j} = n_s(\hbar/m) \nabla \Theta$$

• Often associate a flow with a velocity: introduce superfluid velocity $\mathbf{v}_s = (\hbar/m)\nabla\Theta$ and then $\mathbf{j} = n_s\mathbf{v}_s$

• One-to-one correspondence at the quantum operator level

$$\hbar N \equiv S_z$$
 and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$

(e.g.,
$$\uparrow \equiv$$
 particle, $\downarrow \equiv$ no particle)

• Gradient of the phase gives a flow of particles

$$\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{j} \qquad \text{with} \qquad \mathbf{j} = n_s(\hbar/m) \nabla \Theta$$

- Often associate a flow with a velocity: introduce superfluid velocity $\mathbf{v}_s = (\hbar/m)\nabla\Theta$ and then $\mathbf{j} = n_s\mathbf{v}_s$
- Or write in terms of flow of mass

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{g} \qquad \text{with} \qquad \mathbf{g} = \rho_s \mathbf{v}_s, \ \rho_s = m n_s$$

Hydrodynamic Derivation

ullet Free energy expression: generalized rigidity and energy in external potential V

$$f = \frac{\hbar^2 n_s}{2m} (\nabla \Theta)^2 + \frac{1}{2} K n^2 + V n$$

(*K* is bulk modulus)

Hydrodynamic Derivation

• Free energy expression: generalized rigidity and energy in external potential V

$$f = \frac{\hbar^2 n_s}{2m} (\nabla \Theta)^2 + \frac{1}{2} K n^2 + V n$$

(*K* is bulk modulus)

• Equilibrium phase dynamics (Larmor precession theorem) from dynamics with added constant potential δV :

$$\Psi(V,t) = \Psi(0,t)e^{-i\hbar N\delta Vt}$$

gives

$$\hbar \dot{\Theta} = -\delta V$$
 or in general $\hbar \dot{\Theta} = -\left(\frac{\partial f}{\partial n}\right)_T = -\mu$

Hydrodynamic Derivation

• Free energy expression: generalized rigidity and energy in external potential V

$$f = \frac{\hbar^2 n_s}{2m} (\nabla \Theta)^2 + \frac{1}{2} K n^2 + V n$$

(*K* is bulk modulus)

• Equilibrium phase dynamics (Larmor precession theorem) from dynamics with added constant potential δV :

$$\Psi(V, t) = \Psi(0, t)e^{-i\hbar N\delta Vt}$$

gives

$$\hbar\dot{\Theta} = -\delta V$$
 or in general $\hbar\dot{\Theta} = -\left(\frac{\partial f}{\partial n}\right)_T = -\mu$

Entropy production argument from the thermodynamic identity

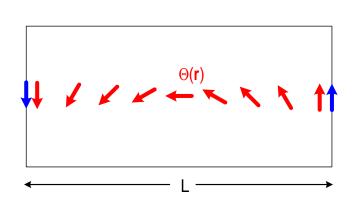
$$d\varepsilon = Tds + \mu dn + \Phi \cdot d(\nabla \Theta)$$
 with $\Phi = (\hbar^2 n_s/m) \nabla \Theta$

gives the current of particles

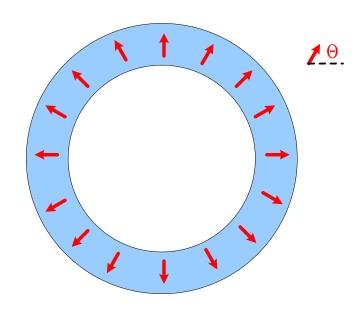
$$\dot{n} = -\nabla \cdot \mathbf{j}$$
 with $\mathbf{j} = n_s (\hbar/m) \nabla \Theta$

Forward

Currents that Flow Forever



$$g = \rho_s(\hbar/m)(\pi/L)$$

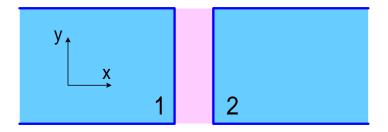


$$g = \rho_s(\hbar/m)(2\pi/L)$$

$$\oint \mathbf{v}_s \cdot \mathbf{dl} = \frac{h}{m}$$

quantum of circulation

Josephson Effect



• Energy depends on phase difference. For weak coupling

$$E = -J_c \cos(\Theta_2 - \Theta_1)$$

• Change in number of particles: current $I = dN_2/dt$

$$I = \frac{dE}{d\Theta_2}$$

d.c. Josephson effect $I = J_c \sin(\Theta_2 - \Theta_1)$

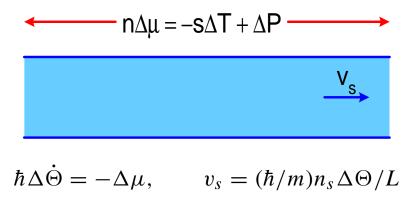
$$I = J_c \sin(\Theta_2 - \Theta_1)$$

• Time dependence of phase is given by the potential

$$\hbar\dot{\Theta}_i = -\mu_i$$

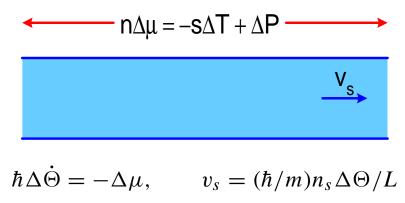
a.c. Josephson effect $\hbar(\dot{\Theta}_2 - \dot{\Theta}_1) = -\Delta\mu$

Breakdown of Superfluidity

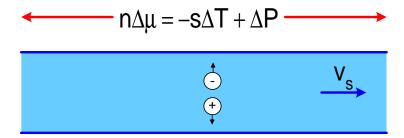


- pressure or temperature difference accelerates superflow
- constant superflow does not require pressure drop

Breakdown of Superfluidity



- pressure or temperature difference accelerates superflow
- constant superflow does not require pressure drop



- pressure drop (dissipation) requires passage of vortex topological defects ("quantized vortex lines") across flow channel
- presence of dissipation depends on whether vortices can be produced by thermal activation or other mechanism

Josephson Effect for a Superconductor

- Θ is phase of *pair* wave function
- expressions must be *gauge invariant* in presence of vector potential

Josephson Effect for a Superconductor

- Θ is phase of *pair* wave function
- expressions must be *gauge invariant* in presence of vector potential

For bulk material

Supercurrent:
$$\mathbf{j} = n_s \frac{\hbar}{2m} \left(\nabla \Theta(\mathbf{x}) + \frac{2e}{\hbar c} \mathbf{A} \right)$$

Josephson equation: $\hbar \dot{\Theta} = 2eV$

Josephson Effect for a Superconductor

- Θ is phase of *pair* wave function
- expressions must be *gauge invariant* in presence of vector potential

For bulk material

Supercurrent:
$$\mathbf{j} = n_s \frac{\hbar}{2m} \left(\nabla \Theta(\mathbf{x}) + \frac{2e}{\hbar c} \mathbf{A} \right)$$

Josephson equation: $\hbar \dot{\Theta} = 2eV$

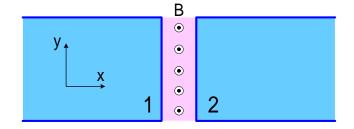
For Josephson junction, current is $I = \int j(y, z) dy dz$ with

$$j(y,z) = j_c \sin\left(\Theta_2 - \Theta_1 + \frac{2e}{\hbar c} \int_1^2 A_x dx\right)$$

and

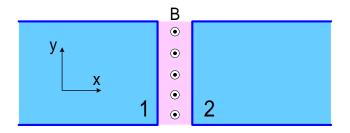
$$V = (\hbar/2e)(\dot{\Theta}_2 - \dot{\Theta}_1)$$

Josephson Junction in a Magnetic Field



Josephson current density:
$$j(y, z) = j_c \sin \left(\Theta_2 - \Theta_1 + \frac{2e}{\hbar c} \int_1^2 A_x dx\right)$$

Josephson Junction in a Magnetic Field



Josephson current density:
$$j(y, z) = j_c \sin \left(\Theta_2 - \Theta_1 + \frac{2e}{\hbar c} \int_1^2 A_x dx\right)$$

For field $B\hat{\mathbf{z}}$ in junction the vector potential is $\mathbf{A} = -By\hat{\mathbf{x}}$, so that

$$I \propto \int dy \ j_c \sin[\Theta_2 - \Theta_1 - (2e/\hbar c)Byd]$$

giving

$$I = I_c(B)\sin(\Theta_2 - \Theta_1)$$
 with $I_c(B) = \frac{\sin(\pi\phi/\phi_0)}{\pi\phi/\phi_0}$

where $\phi = Bld$ is the flux through the junction and $\phi_0 = hc/2e$ is the flux quantum $(2.1 \times 10^{-7} \text{gauss cm}^2)$

Experimental Discovery of the dc Josephson Effect

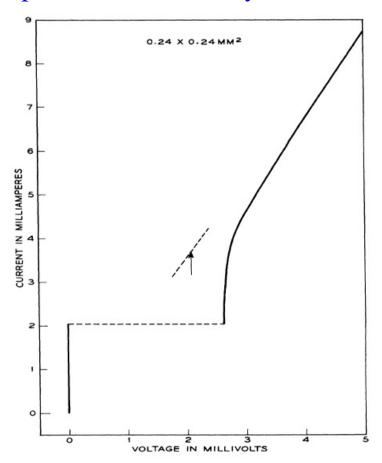


FIG. 1. Current-voltage characteristic for a Pb-I-Pb junction at 1.3°K. The arrow marks the predicted maximum magnitude of the Josephson current.

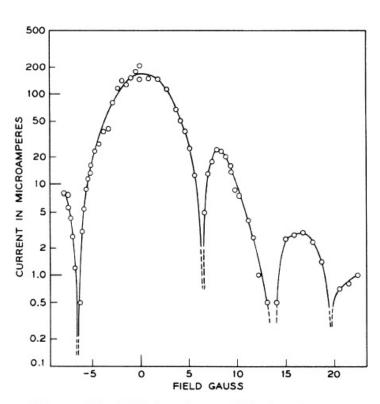
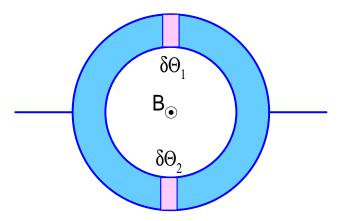


FIG. 3. The field dependence of the Josephson current in a Pb-I-Pb junction at 1.3 $^{\circ}K$.

Rowell, Phys. Rev. Lett. 11, 200 (1963)

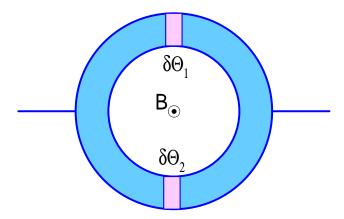
SQUID

Superconducting Quantum Interference Device



SQUID

Superconducting Quantum Interference Device



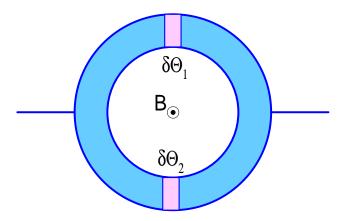
Integrate $\mathbf{j} = n_s \frac{\hbar}{2m} \left(\nabla \Theta(\mathbf{x}) + \frac{2e}{\hbar c} \mathbf{A} \right)$ around whole loop using fact that current \mathbf{j} is small

$$\delta\Theta_1 - \delta\Theta_2 = \frac{2e}{\hbar c} \oint \mathbf{A} \cdot \mathbf{dl} = 2\pi \phi/\phi_0$$

with $\phi = B \times \text{area}$, the flux through the loop.

SQUID

Superconducting Quantum Interference Device



Integrate $\mathbf{j} = n_s \frac{\hbar}{2m} \left(\nabla \Theta(\mathbf{x}) + \frac{2e}{\hbar c} \mathbf{A} \right)$ around whole loop using fact that current \mathbf{j} is small

$$\delta\Theta_1 - \delta\Theta_2 = \frac{2e}{\hbar c} \oint \mathbf{A} \cdot \mathbf{dl} = 2\pi \phi/\phi_0$$

with $\phi = B \times \text{area}$, the flux through the loop.

Total current

$$I = J_c \left[\sin \delta \Theta_1 + \sin \delta \Theta_2 \right]$$

= $2J_c \sin(\pi \phi/\phi_0) \sin[\frac{1}{2}(\delta \Theta_1 + \delta \Theta_2)]$

Maximum current varies periodically with applied field — very sensitive magnetometer.

Four Sounds in a Superfluid

Equations of motion for conserved quantities

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$

$$\dot{\mathbf{g}} = -\nabla P$$

$$\dot{s} = 0$$

and the dynamics of the broken symmetry variable

$$\hbar\dot{\Theta} = -\mu$$

which can be written as

$$\rho \dot{\mathbf{v}}_s = s \nabla T - \nabla P$$

Four Sounds in a Superfluid

Equations of motion for conserved quantities

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$

$$\dot{\mathbf{g}} = -\nabla P$$

$$\dot{s} = 0$$

and the dynamics of the broken symmetry variable

$$\hbar\dot{\Theta} = -\mu$$

which can be written as

$$\rho \dot{\mathbf{v}}_s = s \nabla T - \nabla P$$

Need to connect the momentum density to the superfluid velocity.

Galilean Invariance

Galilean Invariance Transform to frame with a velocity $-\mathbf{v}_n$:

• Momentum density

$$\mathbf{g} = \rho_{\scriptscriptstyle S} \mathbf{v}_{\scriptscriptstyle S}$$

• Momentum density

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s}^{(0)}$$

• Momentum density

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s}^{(0)} + \rho \mathbf{v}_{n}$$

• Momentum density

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s}^{(0)} + \rho \mathbf{v}_{n}$$

Define the "normal fluid density" $\rho_n = \rho - \rho_s$ and write the transformed superfluid velocity $\mathbf{v}_s = \mathbf{v}_s^{(0)} + \mathbf{v}_n$

$$\mathbf{g} = \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n$$

• Momentum density

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s}^{(0)} + \rho \mathbf{v}_{n}$$

Define the "normal fluid density" $\rho_n = \rho - \rho_s$ and write the transformed superfluid velocity $\mathbf{v}_s = \mathbf{v}_s^{(0)} + \mathbf{v}_n$

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s} + \rho_{n} \mathbf{v}_{n}$$

• Entropy current

$$\mathbf{j}^s = s\mathbf{v}_n$$

• Momentum density

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s}^{(0)} + \rho \mathbf{v}_{n}$$

Define the "normal fluid density" $\rho_n = \rho - \rho_s$ and write the transformed superfluid velocity $\mathbf{v}_s = \mathbf{v}_s^{(0)} + \mathbf{v}_n$

$$\mathbf{g} = \rho_{s} \mathbf{v}_{s} + \rho_{n} \mathbf{v}_{n}$$

• Entropy current

$$\mathbf{j}^s = s\mathbf{v}_n$$

• Momentum equation can be transformed to

$$\rho_{s}\dot{\mathbf{v}}_{s} + \rho_{n}\dot{\mathbf{v}}_{n} = -\nabla P$$

and using the equation for $\dot{\mathbf{v}}_s$ in the form

$$(\rho_s + \rho_n)\dot{\mathbf{v}}_s = s\nabla T - \nabla P$$

gives

$$\rho_n(\dot{\mathbf{v}}_s - \dot{\mathbf{v}}_n) = s \nabla T$$

First Sound

Usual coupled density and momentum equations

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$

$$\dot{\mathbf{g}} = -\nabla P$$

and the pressure-density relationship (K is the bulk modulus)

$$\delta P = K \, \delta \rho / \rho$$

First Sound

Usual coupled density and momentum equations

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$

$$\dot{\mathbf{g}} = -\nabla P$$

and the pressure-density relationship (K is the bulk modulus)

$$\delta P = K \, \delta \rho / \rho$$

These give first sound waves $\propto e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$ propagating with the usual sound speed $\omega=c_1q$ with

$$c_1 = \sqrt{\frac{K}{\rho}}$$

Coupled counterflow and entropy wave. Use $c_2 \ll c_1 \Rightarrow$ density constant, $\mathbf{g} = 0$

$$\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0 \qquad \Rightarrow \qquad \mathbf{v}_s - \mathbf{v}_n = -(\rho/\rho_s) \mathbf{v}_n$$

(remember $\rho_s + \rho_n = \rho$).

Coupled counterflow and entropy wave. Use $c_2 \ll c_1 \Rightarrow$ density constant, $\mathbf{g} = 0$

$$\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0 \qquad \Rightarrow \qquad \mathbf{v}_s - \mathbf{v}_n = -(\rho/\rho_s) \mathbf{v}_n$$

(remember $\rho_s + \rho_n = \rho$).

Entropy equation: $\dot{s} = -s\nabla \cdot \mathbf{v}_n$

Coupled counterflow and entropy wave. Use $c_2 \ll c_1 \Rightarrow$ density constant, $\mathbf{g} = 0$

$$\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0 \qquad \Rightarrow \qquad \mathbf{v}_s - \mathbf{v}_n = -(\rho/\rho_s) \mathbf{v}_n$$

(remember $\rho_s + \rho_n = \rho$).

Entropy equation:
$$\dot{s} = -s \nabla \cdot \mathbf{v}_n$$

Entropy-temperature relationship (C is the specific heat): $\delta s = C\delta T/T$

$$C\dot{T} = sT(\rho_s/\rho)\nabla\cdot(\mathbf{v}_s - \mathbf{v}_n)$$

Counterflow equation

$$\rho_n(\dot{\mathbf{v}}_s - \dot{\mathbf{v}}_n) = s \nabla T$$

Coupled counterflow and entropy wave. Use $c_2 \ll c_1 \Rightarrow$ density constant, $\mathbf{g} = 0$

$$\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0 \qquad \Rightarrow \qquad \mathbf{v}_s - \mathbf{v}_n = -(\rho/\rho_s) \mathbf{v}_n$$

(remember $\rho_s + \rho_n = \rho$).

Entropy equation:
$$\dot{s} = -s\nabla \cdot \mathbf{v}_n$$

Entropy-temperature relationship (C is the specific heat): $\delta s = C\delta T/T$

$$C\dot{T} = sT(\rho_s/\rho)\nabla \cdot (\mathbf{v}_s - \mathbf{v}_n)$$

Counterflow equation

$$\rho_n(\dot{\mathbf{v}}_s - \dot{\mathbf{v}}_n) = s \nabla T$$

These give propagating second sound waves with the speed

$$c_2 = \sqrt{\frac{\rho_s}{\rho_n} \frac{s^2 T}{\rho C}}$$

Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean invariance (no \mathbf{v}_n), temperature constant

Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean invariance (no \mathbf{v}_n), temperature constant

$$\dot{
ho} = -\nabla \cdot \mathbf{g}$$
 $\mathbf{g} = \rho_s \mathbf{v}_s$
 $ho \dot{\mathbf{v}}_s = -\nabla P$
 $\delta P = -K \delta \rho / \rho$

Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean invariance (no \mathbf{v}_n), temperature constant

$$\dot{
ho} = -
abla \cdot \mathbf{g}$$
 $\mathbf{g} =
ho_s \mathbf{v}_s$
 $ho \dot{\mathbf{v}}_s = -
abla P$
 $\delta P = -K \delta
ho /
ho$

These gives a fourth sound wave propagating with the speed

$$c_4 = \sqrt{\frac{\rho_s}{\rho} \frac{K}{\rho}}$$

Third Sound

Wave propagating in thin films down to atomic layer thickness.

Like fourth sound, but involve changes of thickness rather than density, and effective compressibility depends on strength of interaction with surface.

Sounds in Helium-4



Next Lecture

Onsager theory and the fluctuation-dissipation theorem

- Derivation and discussion
- Application to nanomechanics and biodetectors