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Today’s Lecture

The simplest magnet: the Ising model

• Calculate a simplephase transitionfrom first principles

• Discuss the behavior near thissecond orderphase transition

• Clarify the idea ofbroken symmetry

• IntroduceLandau theory
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Equilibrium Statistical Mechanics

Isolated system (microcanonical ensemble)

• Each accessible (micro)state equally probable

• Thermodynamic potential: entropyS= kB ln
∑′

n

• Probability of macroscopic configurationC: P(C) ∝ eS(C)/kB
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Equilibrium Statistical Mechanics

Isolated system (microcanonical ensemble)

• Each accessible (micro)state equally probable

• Thermodynamic potential: entropyS= kB ln
∑′

n

• Probability of macroscopic configurationC: P(C) ∝ eS(C)/kB

System in contact with heat bath at temperatureT (canonical ensemble)

• Probability of microstaten proportional toe−βEn, with β = (kBT)−1

• Thermodynamic potential: free energyF = −kBT ln
∑

n e−βEn

• Calculate the partition functionZ = ∑
n e−βEn

• Probability of macroscopic configurationC:

P(C) ∝ eS(C)/kBe−βE(C) = e−βF(C)
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Ising Model

d-dimensional lattice ofN “spins” si = ±1

Hamiltonian

H = −1

2
J

∑
i

nn δ

si si +δ
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Ising Model

d-dimensional lattice ofN “spins” si = ±1

Hamiltonian

H = −1

2
J

∑
i

nn δ

si si +δ − µ
∑

i

si B
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Partition Function
Canonical partition function

Z =
∑
{si }

e−βH{si } .

The enumeration of all configurations cannot be

done ford ≥ 3, and although possible ind = 2,

it is extremely hard there (a problem solved by

Onsager). Ising solved the model in one dimen-

sion.
We will use an approximate solution technique known asmean field

theory.
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Free Spins in a Field

H0 = −b
∑

i

si

writing b for µB.

This is easy to deal with, since the Hamiltonian is the sum over

independent spins.

Average spin on each site is

〈si 〉 = eβb − e−βb

eβb + e−βb
= tanh(βb) .

The partition function is the product of single-spin partition functions

Z0 = [e−βb + eβb]N
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Mean Field Theory

In the mean field approximation we suppose that thei th spin sees an
effective fieldbef f which is the sum of the external field and the
interaction from the neighbors calculated as if each neighboring spin were
fixed at its ensemble average value

beff = b + J
∑
δ

〈si +δ〉 .
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Mean Field Theory

In the mean field approximation we suppose that thei th spin sees an
effective fieldbef f which is the sum of the external field and the
interaction from the neighbors calculated as if each neighboring spin were
fixed at its ensemble average value

beff = b + J
∑
δ

〈si +δ〉 .

We now look for a self consistent solution where each〈si 〉 takes on the
same values which is given by the result for noninteracting spins

s = tanh[βbeff ] = tanh[β(b + 2d Js)] .
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Mean Field Theory

In the mean field approximation we suppose that thei th spin sees an
effective fieldbef f which is the sum of the external field and the
interaction from the neighbors calculated as if each neighboring spin were
fixed at its ensemble average value

beff = b + J
∑
δ

〈si +δ〉 .

We now look for a self consistent solution where each〈si 〉 takes on the
same values which is given by the result for noninteracting spins

s = tanh[βbeff ] = tanh[β(b + 2d Js)] .

First look atb = 0

s = tanh(2dβ Js)
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Mean Field Theory

In the mean field approximation we suppose that thei th spin sees an
effective fieldbef f which is the sum of the external field and the
interaction from the neighbors calculated as if each neighboring spin were
fixed at its ensemble average value

beff = b + J
∑
δ

〈si +δ〉 .

We now look for a self consistent solution where each〈si 〉 takes on the
same values which is given by the result for noninteracting spins

s = tanh[βbeff ] = tanh[β(b + 2d Js)] .

First look atb = 0

s = tanh(2dβ Js) or ε/2dβ J = tanhε

with ε = 2dβ Js.
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Self Consistency
ε/2dβ J = tanhε

ε

tanh ε

ε/2dβJ
T<TcT>Tc

For T > Tc = 2d J/kB the only solution isε = 0
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Self Consistency
ε/2dβ J = tanhε

ε

tanh ε

ε/2dβJ
T<TcT>Tc

For T > Tc = 2d J/kB the only solution isε = 0

For T < Tc two new solutions develop (equal in magnitude but opposite signs) with|ε|
growing continuously belowTc.
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s

T

Tc
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s

T

Tc

NearTc we can get the behavior by expanding tanhε in smallε:

ε = 2dβ J tanhε with ε = 2dβ Js, kBTc = 2d J
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s

T

Tc

NearTc we can get the behavior by expanding tanhε in smallε:

ε = 2dβ J tanhε with ε = 2dβ Js, kBTc = 2d J

becomes

ε = Tc

T
(ε − 1

3
ε3) or ε2 = 3(

Tc

T
− 1)
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s

T

Tc

NearTc we can get the behavior by expanding tanhε in smallε:

ε = 2dβ J tanhε with ε = 2dβ Js, kBTc = 2d J

becomes

ε = Tc

T
(ε − 1

3
ε3) or ε2 = 3(

Tc

T
− 1)

giving to lowest order in small(1 − T/Tc)

s = ±√
3

(
Tc − T

Tc

)1/2
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Order Parameter Exponent

Focus on thepower lawtemperature dependence nearTc.
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Order Parameter Exponent

Focus on thepower lawtemperature dependence nearTc.

Introduce the small reduced temperature deviationt = (T − Tc)/Tc.

We had

s = ±√
3

(
Tc − T

Tc

)1/2
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Order Parameter Exponent

Focus on thepower lawtemperature dependence nearTc.

Introduce the small reduced temperature deviationt = (T − Tc)/Tc.

We had

s = ±√
3

(
Tc − T

Tc

)1/2

Write this for smallt < 0 as:

s ∝ |t |β ⇒ order parameter exponentβ = 1/2
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Susceptibility Exponent

The spin susceptibility isχ = ds/db|b=0:

s = tanh[β(b + 2Jds)]

so that (writings′ = ds/db)

s′ = sech2[β(b + 2Jds)](β + Tc

T
s′) .
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Susceptibility Exponent

The spin susceptibility isχ = ds/db|b=0:

s = tanh[β(b + 2Jds)]

so that (writings′ = ds/db)

s′ = sech2[β(b + 2Jds)](β + Tc

T
s′) .

Just aboveTc, settingb = s = 0

χ = 1

kBTc

(
T − Tc

Tc

)−1

giving adivergingsusceptibility asT approachesTc from above

χ ∝ |t |−γ ⇒ susceptibility exponentγ = 1
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Magnetization Exponent

Exactly atTc there is anonlineardependences(b) of s onb:

s = tanh[βc(b + 2Jds)]

' (βcb + s)− 1

3
(βcb + s)3 + · · · .
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Magnetization Exponent

Exactly atTc there is anonlineardependences(b) of s onb:

s = tanh[βc(b + 2Jds)]

' (βcb + s)− 1

3
(βcb + s)3 + · · · .

Thes terms cancel, so we must retain thes3 term. The linear term inb

survives, so we can ignore terms inb2, bs etc.

This gives

s(T = Tc, b) '
(

3b

kBTc

)1/3

sgnb + · · · .
so that

s ∝ |b|1/δsgnb ⇒ magnetization exponentδ = 3.
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Internal Energy

With a little more effort we can calculate the internal energyU and other

thermodynamic potentials.

We will do this in zero magnetic field only.

In the mean field approximationU is simply given byNd “bonds” each

with energy−Js2 for T < Tc:

U = −Nd Js2 ' −3Nd J

(
Tc − T

Tc

)
.

For T > Tc the energy is zero in mean field theory (an indication of the

limitations of this theory, since clearly there will be some lowering of

energy from the correlation of nearest neighbors).
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Free Energy

For noninteracting spins in fieldb we hadF = −kBT ln Z0 with

Z0 = [e−βb + eβb]N .

Evaluate (?) the free energy for the interacting spins replacingb by beff = 2Jds.
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Free Energy

For noninteracting spins in fieldb we hadF = −kBT ln Z0 with

Z0 = [e−βb + eβb]N .

Evaluate (?) the free energy for the interacting spins replacingb by beff = 2Jds.

This turns out not to be quite right, so call the expressionFI (I for independent)

FI = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
replacing 2d J/kB by Tc.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 2, 24 March 2006 14

Free Energy

For noninteracting spins in fieldb we hadF = −kBT ln Z0 with

Z0 = [e−βb + eβb]N .

Evaluate (?) the free energy for the interacting spins replacingb by beff = 2Jds.

This turns out not to be quite right, so call the expressionFI (I for independent)

FI = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
replacing 2d J/kB by Tc.

This is not quite correct, because we havedouble countedthe interaction energy. So we

need to subtract off a termU to correct for this

F = FI − U = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
+ Nd Js2.
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Free Energy

For noninteracting spins in fieldb we hadF = −kBT ln Z0 with

Z0 = [e−βb + eβb]N .

Evaluate (?) the free energy for the interacting spins replacingb by beff = 2Jds.

This turns out not to be quite right, so call the expressionFI (I for independent)

FI = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
replacing 2d J/kB by Tc.

This is not quite correct, because we havedouble countedthe interaction energy. So we

need to subtract off a termU to correct for this

F = FI − U = −NkBT ln
[
e−(Tc/T)s + e(Tc/T)s

]
+ Nd Js2.

NearTc expand this in smalls

FI = −NkBT ln 2 − NkBTc

2

[(
Tc − T

T

)
s2 − 1

6

(
Tc

T

)3

s4 · · ·
]
.
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Specific Heat Exponent

F = −NkBT ln 2 − N Jd

[(
Tc − T

T

)
s2 − 1

6

(
Tc

T

)3

s4 · · ·
]

Minimize F with respect tos gives, as before

s =

 ±√

3
(

Tc−T
Tc

)1/2
for T < Tc

0 for T ≥ Tc

and the reduction inF belowTc for nonzeros

δF = −3

2
Nd J

(
Tc − T

Tc

)2

+ · · · .

The power law dependence ofδF nearTc is used to define thespecific heat exponent

δF ∝ |t |2−α ⇒ specific heat exponentα = 0

Specific heat isC = −T d2F/dT2 is zeroaboveTc, andjumpsto 3NkB/2 atTc
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Summary

Tc

T

b
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Tc

T

b

s

T

Tc
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Tc

T

b

C

T
Tc

δf
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Tc

T

b

χ

TTc
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Tc

T

b

s

b
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Tc

T

b

s

b
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When is mean field theory exact?

Mean field theory is a useful first approach giving a qualitative prediction

of the behavior at phase transitions.

It becomes exact when a large number of neighbors participate in the

interaction with each spin:

• in high enough spatial dimensiond;

• for long range interactions.
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When is mean field theory exact?

Mean field theory is a useful first approach giving a qualitative prediction

of the behavior at phase transitions.

It becomes exact when a large number of neighbors participate in the

interaction with each spin:

• in high enough spatial dimensiond;

• for long range interactions.

In other cases it is only an approximate theory, and fluctuations are

important.
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Fluctuations May Destroy the Order

One dimension

L

• Energy cost to flip a cluster of lengthL is 4J

• Probability of flipping cluster∝ e−4β J
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Fluctuations May Destroy the Order

One dimension

L

• Energy cost to flip a cluster of lengthL is 4J

• Probability of flipping cluster∝ e−4β J

No ordering at any nonzero temperature(the problem Ising solved)
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Fluctutations in 2d Ising Model

L

• Energy to flip cluster of sizeL grows as roughly8J L
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Fluctutations in 2d Ising Model

L

• Energy to flip cluster of sizeL grows as roughly 8J L

Ordering occurs at nonzero transition temperature
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Fluctuations Change Exponents

Exponents for the Ising model

Quantity Dependence MF 2d 3d

Order parameter |s| ∝ |t |β , t < 0 β = 1
2 β = 1

8 β = 0.33

Susceptibility χ ∝ |t |−γ γ = 1 γ = 7
4 γ = 1.25

Free energy δF ∝ |t |2−α α = 0 α = 0 α = 0.12

Order parameter atTc s ∝ |b|1/δsgnb δ = 3 δ = 15 δ = 4.8
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General Remarks
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General Remarks

• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.
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General Remarks

• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.

• For T < Tc equally good but macroscopically different states exist. This is abroken

symmetry—the thermodynamic states do not have the full symmetry of the

Hamiltonian. Instead the different thermodynamic states belowTc are related by this

symmetry operation.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 2, 24 March 2006 26

General Remarks

• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.

• For T < Tc equally good but macroscopically different states exist. This is abroken

symmetry—the thermodynamic states do not have the full symmetry of the

Hamiltonian. Instead the different thermodynamic states belowTc are related by this

symmetry operation.

• The thermodynamic potentialsF,U, S. . . are continuous atTc but not necessarily

smooth (analytic).
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• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.

• For T < Tc equally good but macroscopically different states exist. This is abroken

symmetry—the thermodynamic states do not have the full symmetry of the

Hamiltonian. Instead the different thermodynamic states belowTc are related by this

symmetry operation.

• The thermodynamic potentialsF,U, S. . . are continuous atTc but not necessarily

smooth (analytic).

• Fluctuations involving admixtures of the other states become important asT → Tc,

so that mean field theory willnot in general be a good approximationnearTc.
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General Remarks

• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.

• For T < Tc equally good but macroscopically different states exist. This is abroken

symmetry—the thermodynamic states do not have the full symmetry of the

Hamiltonian. Instead the different thermodynamic states belowTc are related by this

symmetry operation.

• The thermodynamic potentialsF,U, S. . . are continuous atTc but not necessarily

smooth (analytic).

• Fluctuations involving admixtures of the other states become important asT → Tc,

so that mean field theory willnot in general be a good approximationnearTc.

• Thermodynamic potentials showpower lawbehavior in|1 − T/Tc| nearTc. The

derivativesof the potentials (specific heat, susceptibility etc.) similarly show power

laws, and willdivergeat Tc if the power is negative. The exponents are different

than the values calculated in mean field theory, and are usually no longer rationals.
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General Remarks

• A new state grows continuously out of the previous one: forT → Tc the two states

become quantitatively the same.

• For T < Tc equally good but macroscopically different states exist. This is abroken

symmetry—the thermodynamic states do not have the full symmetry of the

Hamiltonian. Instead the different thermodynamic states belowTc are related by this

symmetry operation.

• The thermodynamic potentialsF,U, S. . . are continuous atTc but not necessarily

smooth (analytic).

• Fluctuations involving admixtures of the other states become important asT → Tc,

so that mean field theory willnot in general be a good approximationnearTc.

• Thermodynamic potentials showpower lawbehavior in|1 − T/Tc| nearTc. The

derivativesof the potentials (specific heat, susceptibility etc.) similarly show power

laws, and willdivergeat Tc if the power is negative. The exponents are different

than the values calculated in mean field theory, and are usually no longer rationals.

• It is not possible to classify phase transitions into higher orders (second, third etc.)

according to which derivative of the free energy is discontinuous (Ehrenfest).
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Landau Theory of Second Order Phase Transitions

Landau theory formalizes these ideas for any second order phase

transition.
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Landau Theory of Second Order Phase Transitions

• Second order phase transitions occur when a new state ofreduced

symmetrydevelops continuously from the disordered (high

temperature) phase.
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• Second order phase transitions occur when a new state ofreduced

symmetrydevelops continuously from the disordered (high

temperature) phase.

• The ordered phase has alower symmetrythan the Hamiltonian —

spontaneously broken symmetry.
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• There will therefore be a number (sometimes infinite) of equivalent

symmetry related states (e.g., equal free energy).
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• Second order phase transitions occur when a new state ofreduced
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temperature) phase.

• The ordered phase has alower symmetrythan the Hamiltonian —

spontaneously broken symmetry.

• There will therefore be a number (sometimes infinite) of equivalent

symmetry related states (e.g., equal free energy).

• These are macroscopically different, and so thermal fluctuations will

not connect one to another in the thermodynamic limit.
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Landau Theory of Second Order Phase Transitions

• Second order phase transitions occur when a new state ofreduced

symmetrydevelops continuously from the disordered (high

temperature) phase.

• The ordered phase has alower symmetrythan the Hamiltonian —

spontaneously broken symmetry.

• There will therefore be a number (sometimes infinite) of equivalent

symmetry related states (e.g., equal free energy).

• These are macroscopically different, and so thermal fluctuations will

not connect one to another in the thermodynamic limit.

• To describe the ordered state we introduce a macroscopicorder

parameterψ that describes thecharacterandstrengthof the broken

symmetry.
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Landau Theory of Second Order Phase Transitions

• Second order phase transitions occur when a new state ofreduced

symmetrydevelops continuously from the disordered (high

temperature) phase.

• The ordered phase has alower symmetrythan the Hamiltonian —

spontaneously broken symmetry.

• There will therefore be a number (sometimes infinite) of equivalent

symmetry related states (e.g., equal free energy).

• These are macroscopically different, and so thermal fluctuations will

not connect one to another in the thermodynamic limit.

• To describe the ordered state we introduce a macroscopicorder

parameterψ that describes thecharacterandstrengthof the broken

symmetry.

• The order parameterψ is an additional thermodynamic variable
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Free Energy Expansion

Since the order parameter grows continuously from zero at the transition

temperature, Landau suggested an expansion of the free energy:
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Free Energy Expansion

Since the order parameter grows continuously from zero at the transition

temperature, Landau suggested an expansion of the free energy:

• Taylor expansion in order parameterψ
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Free Energy Expansion

Since the order parameter grows continuously from zero at the transition

temperature, Landau suggested an expansion of the free energy:

• Taylor expansion in order parameterψ (i.e., analytic)
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Free Energy Expansion

Since the order parameter grows continuously from zero at the transition

temperature, Landau suggested an expansion of the free energy:

• Taylor expansion in order parameterψ (i.e., analytic)

• The free energy must be invariant under all symmetry operations of

the Hamiltonian, and the terms in the expansion are restricted by these

symmetry considerations.
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Free Energy Expansion

Since the order parameter grows continuously from zero at the transition

temperature, Landau suggested an expansion of the free energy:

• Taylor expansion in order parameterψ (i.e., analytic)

• The free energy must be invariant under all symmetry operations of

the Hamiltonian, and the terms in the expansion are restricted by these

symmetry considerations.

• The order parameter may take on different values in different parts of

the systemψ(r ), and so we introduce the free energy densityf

F =
∫

ddx f (ψ, T)

and expand the free energy densityf in the local order parameter

ψ(r ) for smallψ .
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Expansion for the Ising Model

For the Ising ferromagnet, useψ = m(Er ), with m(Er ) the magnetization

per unit volume averaged over some reasonably macroscopic volume.
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Expansion for the Ising Model

For the Ising ferromagnet, useψ = m(Er ), with m(Er ) the magnetization

per unit volume averaged over some reasonably macroscopic volume.

The free energy is invariant under spin inversion, and so the Taylor

expansion contains only even powers ofm

f (m, T) ' fo(T)+ α(T)m2 + 1

2
β(T)m4
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Expansion for the Ising Model

For the Ising ferromagnet, useψ = m(Er ), with m(Er ) the magnetization

per unit volume averaged over some reasonably macroscopic volume.

The free energy is invariant under spin inversion, and so the Taylor

expansion contains only even powers ofm

f (m, T) ' fo(T)+ α(T)m2 + 1

2
β(T)m4+γ (T) E∇m · E∇m .

The last term in the expansion gives a free energy cost for a nonuniform

m(Er ). A positiveγ ensures that the spatially uniform state gives the lowest

value of the free energy.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 2, 24 March 2006 30

Expansion for the Ising Model

For the Ising ferromagnet, useψ = m(Er ), with m(Er ) the magnetization

per unit volume averaged over some reasonably macroscopic volume.

The free energy is invariant under spin inversion, and so the Taylor

expansion contains only even powers ofm

f (m, T) ' fo(T)+ α(T)m2 + 1

2
β(T)m4+γ (T) E∇m · E∇m .

The last term in the expansion gives a free energy cost for a nonuniform

m(Er ). A positiveγ ensures that the spatially uniform state gives the lowest

value of the free energy.

Higher order terms could be retained, but are not usually necessary for the

important behavior nearTc.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 2, 24 March 2006 31

Minimum Free Energy

f (m, T)− fo(T) ' α(T)m2 + 1

2
β(T)m4 + γ (T) E∇m · E∇m .

If fluctuations are small, the state that minimizes the free energy will be the physically
realized state. This is not always the case, and Landau’s theory corresponds to a mean
field theory that ignores these fluctuations.
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Minimum Free Energy

f (m, T)− fo(T) ' α(T)m2 + 1

2
β(T)m4 + γ (T) E∇m · E∇m .

If fluctuations are small, the state that minimizes the free energy will be the physically
realized state. This is not always the case, and Landau’s theory corresponds to a mean
field theory that ignores these fluctuations.

For the Ising magnet the minimum ofF is given by a uniformm(Er ) = m̄ satisfying

αm̄ + βm̄3 = 0 .

giving

m̄ =

 ±√−α/β for α < 0

0 for α > 0
.
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Minimum Free Energy

f (m, T)− fo(T) ' α(T)m2 + 1

2
β(T)m4 + γ (T) E∇m · E∇m .

If fluctuations are small, the state that minimizes the free energy will be the physically
realized state. This is not always the case, and Landau’s theory corresponds to a mean
field theory that ignores these fluctuations.

For the Ising magnet the minimum ofF is given by a uniformm(Er ) = m̄ satisfying

αm̄ + βm̄3 = 0 .

giving

m̄ =

 ±√−α/β for α < 0

0 for α > 0
.

Identify α = 0 as where the temperature passes throughTc, and expand near here

α(T) ' a(T − Tc)+ · · ·
β(T) ' b + · · ·
γ (T) ' γ + · · ·
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Exponents etc.

f − fo ' α(T)m2 + 1

2
β(T)m + γ (T)( E∇m)2

' a(T − Tc)m
2 + 1

2
bm4 + γ ( E∇m)2

and the valuem = m̄ minimizing f

m̄ '
(a

b

)1/2
(Tc − T)1/2 for T < Tc .

Evaluating f at m̄ gives

f̄ − f0 ' −a2(T − Tc)
2

2b
.

These are the same results for the exponents we found directly from mean

field theory.
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f − fo = a(T − Tc)m
2 + 1

2
bm4

f

m

T>Tc

T=Tc

T<Tc
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Coupling to Magnetic Field

f (m, T, B) = f0(T)+ a(T − Tc)m
2 + 1

2
bm4 + γ ( E∇m)2−mB.

The magnetic field couples directly to the order parameter and is a

symmetry breakingfield.



Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics:Lecture 2, 24 March 2006 34

Coupling to Magnetic Field

f (m, T, B) = f0(T)+ a(T − Tc)m
2 + 1

2
bm4 + γ ( E∇m)2−mB.

The magnetic field couples directly to the order parameter and is a

symmetry breakingfield.

Minimizing f with respect tom gives a susceptibility diverging atTc, e.g.,

for T > Tc

χ = m̄

B

∣∣∣∣
B=0

= 1

2a
(T − Tc)

−1,

and atT = Tc for small B

m̄ =
(

1

2b

)1/3

B1/3.

Again the exponents are the same as we found in from mean field theory.
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First Order Transitions

We can also encounter first order broken-symmetry transitions.
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First Order Transitions

We can also encounter first order broken-symmetry transitions.

For example the liquid solid transition is described by the strength of

density wavesρei Eq·Er .

In three dimensions we need three density waves with wave vectors that

prescribe the reciprocal lattice; we will suppose all three components have

the same magnitudeρ.

Since the density perturbation is added to the uniform density of the

liquid, there is no symmetry under changing sign of the density wave, and

so the free energy expansion now may have a cubic term

f − f0 = a(T − Tc)ρ
2 + cρ3 + 1

2
bρ4

(suppose uniformρ for simplicity).
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f − f0 = a(T − Tc)ρ
2 + cρ3 + 1

2
bρ4

f

ρ

T=Tc

T>>Tm

T>Tm

T =Tm

Tc<T<Tm

solid

T<<Tm
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• At high temperatures there is a single minimum atρ = 0

corresponding to the liquid phase.

• As the temperature is lowered a second minimum develops, but at a

free energy that remains higher than the liquid.

• At Tm the new free energy becomes equal: this is the melting

temperature where the liquid and solid have the same free energy.

• Below Tm the solid has the lower free energy. There is a jump inρ at

Tm, not a continuous variation as at a second order transition.

• The temperatureTc at which the minimum in the free energy atρ = 0

disappears (i.e. the liquid state no longer exists) is not of great

physical significance.

• The Landau expansion technique may not be accurate at a first order

transition: the jump inρ at the transition means there is no guarantee

that the truncated expansion inρ is a good approximation.
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Another way a first order transition can occur is if the coefficient of the

quartic term turns out to benegative. Then we must extend the expansion

to sixthorder to get finite results (otherwise the free energy is unbounded

below):

f − f0 = a(T − Tc)m
2−1

2
|b| m4 + 1

3
cm6.
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f − f0 = a(T − Tc)m
2 − 1

2
|b| m4 + 1

3
cm6

T=Tc

T=Tf

f

m
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Next Lecture

• Magnets with continuous symmetry (XY model)

� Spin waves and the Mermin-Wagner theorem

� Topological defects

� Kosterlitz-Thouless transition


