
Landau Theory of Second Order Phase Transitions

Order Parameter

Second order phase transitions occur when a new state ofreduced symmetrydevelops continuously from the
disordered (high temperature) phase. The ordered phase has alower symmetrythan the Hamiltonian—the
phenomenon ofspontaneously broken symmetry. There will therefore be a number (sometimes infinite) of
equivalent (e.g. equal free energy) symmetry related states. These are macroscopically different, and so
thermal fluctuations will not connect one to another in the thermodynamic limit. To describe the ordered
state we introduce a macroscopicorder parameterthat describes thecharacterandstrengthof the broken
symmetry.

Examples

1. Ising ferromagnet: the Hamiltonian is invariant under allsi → −si , whereas the low temperature phase
has a spontaneous magnetization, and so is not. A convenient order parameter is the total average spin
S = ∑

i 〈si 〉 or the magnetizationM = µS. This reflects the nature of the ordering (under the
transformationsi → −si we haveS→ −S) and goes to zero continuously atTc.

2. Ising antiferromagnet on a simple cubic lattice: the ordering is the staggered magnetizationN =∑
n(−1)n 〈sn〉 where alternate sites are labelled even or odd.

3. Heisenberg ferromagnet: now the Hamiltonian is invariant under any rotation of all the spins together.
The ordering is characterized by avectororder parameter. A convenient choice is again the total spin
ES = ∑

i 〈Esi 〉 or magnetization.

4. Heisenberg antiferromagnet on a simple cubic lattice: the staggered magnetization is now a vector
EN = ∑

n(−1)n 〈Esn〉.
5. Superfluid: the broken symmetry is the invariance of the (quantum) Hamiltonian under a phase change

of the wave function. Since for a charge system a gauge transformation also changes the quantum
phase, this is also known as broken gauge symmetry. The order parameter can be thought of as the one
particle wave function into which the particle Bose condense, multiplied by the number of condensed
atoms. This picture is good for a non- or weakly interacting system. For a strongly interacting system
a better definition is the “expectation value of the particle annihilation operator”〈ψ(Er )〉.

6. Solid: has broken translational and rotational symmetry, and a convenient order parameter is the
amplitude of the density wave. In three dimensions the liquid-solid transition is always first order, but
in two dimensions may be second order.

7. Nematic liquid crystal: consists of long molecules which align parallel to one another at low temper-
atures, although the position of the molecules remains disorder as in a liquid. The liquid becomes
anisotropic, and a second rank tensor characterizes the strength of the anisotropy and can be used as
the order parameter.

Free energy expansion

Since the order parameter grows continuously from zero at the transition temperature, Landau suggested that
an expansion of the free energy in a Taylor expansion in the order parameter would tell us about the behavior
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near the transition. The free energy must be invariant under all symmetry operations of the Hamiltonian, and
the terms in the expansion are restricted by symmetry considerations.

The order parameter may conceivably take on different values (“point in different directions”) in different
parts of the system (for example due to thermal fluctuations), and so we first write

F =
∫

d3x f (ψ, T) (1)

introducing the free energy densityf which is a function of the local order parameterψ(Er ) and temperature,
and is then expanded in smallψ .

To be explicit, lets consider the Ising ferromagnet, andψ = m(Er ), with m(Er ) the magnetization per unit
volume or the magnetization per spin averaged over some reasonably macroscopic volume. Since the free
energy is invariant under spin inversion, the Taylor expansion must contain only even powers ofm. Hence

f (m, T) = fo(T)+ α(T)m2 + 1

2
β(T)m4 + γ (T) E∇m · E∇m. (2)

The last term in the expansion gives a free energy cost for a nonuniformm(Er ), again using the idea of a
Taylor expansion, now in spatial derivatives as well. A positiveγ ensures that the spatially uniform state
gives the lowest value of the free energyF . Sixth and higher order terms inm could be retained, but are not
usually necessary for the important behavior nearTc. Note that we keep the fourth order term, because at
Tc the coefficient of the second order termα(T) becomes zero. Only quadratic derivative terms are usually
needed, sinceγ (Tc) remains nonzero.

Minimum free energy

f

m

T>Tc

T=Tc
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Figure 1: Free energy densityf as a function of (uniform)m. BelowTc new minima at nonzero±m̄ develop
(the dashed curve denotesm̄(T). If the magnetization of the system is varied (rather than the field) the dotted
line is the tie line giving the variation of the free energy as a function of the total magnetization density
m = M/V .

We expect the state that minimizes the free energy to be the physically realized state. This is true so long as
the fluctuations around this most probably value are small compared to this value. We will find that this is not
always the case, and Landau’s theory then corresponds to a mean field theory that ignores these fluctuations.
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For the Ising ferromagnet the minimum ofA is given by a uniformm(Er ) = m̄ satisfying

αm̄ + βm̄3 = 0. (3)

The solutions corresponding to a minimum are

m̄ = ±√−α/β for α < 0, (4a)

= 0 for α > 0. (4b)

We identifyα = 0 as where the temperature passes throughTc, and expand near here

α(T) ' a(T − Tc)+ · · · (5a)

β(T) ' b + · · · (5b)

γ (T) ' γ + · · · (5c)

so that

f ' fo(T)+ a(T − Tc)m
2 + 1

2
bm4 + γ ( E∇m)2 (6)

and

m̄ '
(a

b

)1/2
(Tc − T)1/2 for T < Tc. (7)

Evaluating f at m̄ gives

f̄ = f0 − a2(T − Tc)
2

2b
(8)

showing the lowering of the free energy by the ordering. Note thatf̄ (T) deviates fromf0 quadratically,
as we found for the mean field theory of the Ising ferromagnet. This will yield a jump discontinuity in the
specific heat

c =
{

c0 T ≥ Tc

c0 + a
b T T < Tc

, (9)

with c0 the smooth contribution coming fromf0(T).

We can gain useful insight into the transition by plottingf (m) for a uniformm for various temperatures, as
in Fig. 1. For T > Tc the free energy has a single minimum atm = 0. BelowTc two new minima at±m̄
develop. Right atTc the curve is very flat at the minimum (varying asm): we might expect fluctuations to
be particularly important here.

It is easy to add the coupling to a magnetic field

f (m, T, B) = f0(T)+ a(T − Tc)m
2 + 1

2
bm4 + γ ( E∇m)2 − mB. (10)

The magnetic field couples directly to the order parameter and is asymmetry breakingfield: with the magnetic
field the full Hamiltonian is not invariant under spin inversion. Now the free energy is minimized by a non
zerom. Minimizing f again with respect tom, we find aboveTc the diverging susceptibility

χ = m̄

B

∣∣∣∣
B=0

= 1

2a
(T − Tc)

−1, (11)

and atT = Tc for small B

m =
(

1

2b

)1/3

B1/3. (12)

Note that the exponents (power laws) are the same as we found in the direct mean field theory calculation.
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Other Symmetries

The Landau approach is readily generalized to other symmetries. For example for the Heisenberg ferromagnet
the order parameter is a vectorEm. The free energy is expanded as a Taylor expansion in the components
mx,my,mz and each term must be invariant under rotations ofEm, and also the derivative term must be
invariant under rotations of the space axes separately fromEm. The component terms can be combined to give
the simple expression in vector notation

f ( Em, T, EB) = f0(T)+ a(T − Tc) Em · Em + 1

2
b( Em · Em)2 + γ (

∑
iα

∇i mα∇i mα)
2 − Em · EB.

Notice the “dot product form” of the gradient term separately in the gradient andEm components: this
guarantees the invariance under separate rotations of spin and space coordinates. We might schematically
write this term as( E∇ Em)2, but the double summation is what is meant!

Similarly for a complex order parameterψ , we do a Taylor expansion in Reψ and Imψ , and demand the
invariance of each term under a change of the phase. This leads to the form

f (ψ, T) = f0(T)+ a(T − Tc) |ψ |2 + 1

2
b |ψ |4 + γ E∇ψ · E∇ψ∗.

Note that it is nicest to write the expression in terms of|ψ |, but the correct approach—and the best way to
avoid confusion—is to establish the expansion in Reψ and Imψ and then simplify. For example a term|ψ |3
is not allowed, since even though it is invariant under changing the phase, it does not correspond to a term in
the Taylor expansion in Reψ , Imψ .

First order transitions

f

ρ

T=Tc

T>>Tm

T>Tm

T=Tm

Tc<T<Tm

T<Tc

solid

T=Tc

T=Tf

f

m

(a) (b)

Figure 2: (a) Free energy plots for a free energy with cubic invariants; (b) Free energy plots in the case where
the coefficient of the quatic term isnegative.
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We can also encounter first order broken-symmetry transitions. For example the liquid solid transition is
described by the strength of density wavesρei Eq·Er . In three dimensions we need three density waves with wave
vectors that prescribe the reciprocal lattice; we will suppose all three components have the same magnitude
ρ. Since the density perturbation is added to the uniform density of the liquid, there is no symmetry under
changing sign of the density wave, and so the free energy expansion now may have a cubic term

f − f0 = a(T − Tc)ρ
2 + cρ3 + 1

2
bρ4 (13)

(we suppose uniformρ for simplicity).

Now the behavior off (ρ, T) is rather different, as in Fig.2a. At high temperatures there is a single minimum
atρ = 0 corresponding to the liquid phase. As the temperature is lowered a second minimum develops, but
at a free energy that remains higher than the liquid. Only atTm does the new free energy become lower, and
this is the melting temperature where the liquid and solid have the same free energy. BelowTm the solid
is the lower free energy. Note the jump inρ at Tm, rather than a continuous variation as at a second order
transition. The temperatureTc at which the minimum in the free energy atρ = 0 disappears (i.e. the liquid
state no longer exists) is not of great physical significance.

The Landau expansion technique may not be accurate at a first order transition: since there is a jump inρ

at the transition, there is no guarantee that the truncated expansion inρ is a reasonable approximation here.
Indeed the liquid-solid transition is usually strongly first order, so that the power series expansion in the order
parameter is not useful, and can give misleading conclusions.

Another way a first order transition can occur, even in the absence of cubic terms in the free energy, is if the
coefficient of the quartic term turns out to benegative. Then we must extend the expansion tosixthorder to
get finite results (otherwise the free energy is unbounded below). Again assuming uniformm for simplicity:

f − f0 = a(T − Tc)m
2 − 1

2
|b| m4 + 1

3
cm6. (14)

Now, see Fig.2b two symmetric secondary minima develop forT > Tc, and become the lowest minima
at temperatureT = Tf > Tc which we identify as the first order transition temperature. Again, atTc the
minimum atm = 0 corresponding to the disordered phase disappears, but this is not often relevant to the
physics.

5


	Landau Theory of Second Order Phase Transitions
	Order Parameter
	Examples

	Free energy expansion
	Minimum free energy
	Other Symmetries
	First order transitions


