
Equilibrium Versus Nonequilibrium

What do we mean by the terms equilibrium, far from equilibrium, local equilibrium, etc.? It is first important
to point out that we mean more by “equilibrium” than just “steady state”. We will be studying many
phenomena that are time independent (perhaps after a transient dynamic period) and so may be called steady
state. But these phenomena are also sensibly characterized as “far from equilibrium”. More precise terms
would be “thermodynamic equilibrium” and “far from thermodynamic equilibrium”, etc. Thus, this book is
concerned with the phenomenon of “pattern formation far from thermodynamic equilibrium”. To proceed
we need to understand these terms in more detail.

In this chapter we discuss the basic ideas of equilibrium versus nonequilibrium. It is informative to do
this through a review of the fundamental formulation of the thermodynamics of macroscopic systems. This
is not intended to be an exhaustive introduction to thermodynamics, and the reader is referred to standard
Thermodynamics textbooks for a more complete treatment.

Much of the remainder of this book is concerned with understanding the properties of physical systems
described by macroscopic dynamical equations of motion that are nonlinear partial differential equations,
such as the equations of fluid flow, or heat and concentration diffusion. Since these equations are quite familiar
and may be motivated phenomenologically, they provide a completely adequate starting point for most of the
discussion. However in this chapter we will delve deeper and discuss the connection of these macroscopic
dynamical descriptions to the more fundamental issues of equilibrium and nonequilibrium thermodynamics.

We will discuss the issues of equilibrium versus nonequilibrium in the context of macroscopic systems,
i.e. systems where the size and the scale of the phenomena of interest are much bigger than the molecular
scale, so that an enormous number of particles are involved. Such systems form the main focus of this
book. For these systems the discussion may be given within the framework of thermodynamics, because
although globally they arefar from equilibrium, they are locally, i.e. over small but still macroscopic regions,
near thermodynamic equilibrium. This allows us to write down a description of the dynamics in terms of
macroscopic equations of motion that are partial differential equations for the spatial and temporal variation
of usual thermodynamic quantities such as density and temperature. The macroscopic descriptions of diverse
systems, from physics to chemistry, have much in common, and this gives a certain unity to our discussion.
For microscopic systems on the other hand, on the scale of the basic molecular constituents, a much more
difficult statistical mechanics treatment would be needed. This treatment is likely to be quite specific to each
system. The study of microscopic systems far from equilibrium is much less well advanced.

At the end of the chapter we review some ideas from thermodynamics and statistical physics that will be
useful in later chapters. We briefly discuss the residual effects of the molecular nature of matter that lead to
small stochastic or noise terms in the macroscopic equations: usually the size of the noise terms is tiny, and
they do not play an important role in macroscopic pattern formation, but there are a few examples where this is
not the case. Next we touch on the topic of phase transitions in equilibrium systems, partly for completeness
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in understanding what variables are needed to completely define the thermodynamic state of an equilibrium
system, and partly because the study of pattern formation benefits from ideas and questions first thought
about in this context. Finally we compare and contrast the ideas of bifurcations and phase transitions, and
remark that pattern forming systems show elements from both types of theories.

2.1 Equilibrium

2.1.1 A recipe for equilibrium

Isolated
Sys tem

Fig. 2.1. System isolated from rest of universe.

We first need to define what we mean by an equilibrium system (i.e. a system in thermodynamic equilib-
rium). We can create a system that illustrates the definition in the following way. Take a system of interest,
and isolate it from all contact with the remainder of the universe. There seems no problem in principle with
doing this. Certainly we could imagine improving the isolation (thicker walls etc.) until further improvement
has a negligible effect on the system. We would test this by making observations on the system, delicate
enough not to themselves significantly perturb the system, to measure the state of the system. Now wait.
Wait long enough that again there is negligible effect on the observed quantities of waiting longer. (Some
quantities that we might measure might fluctuate in time: then we would demand that their statistical prop-
erties no longer change as we wait longer.) Eventually the system reaches what we will call thermodynamic
equilibrium. How long do we have to wait? Typically we might expect transient effects to die out quite
rapidly. For example a prepared non-Maxwellian distribution of velocities in a gas may return close to the
equilibrium Maxwellian distribution in a time comparable to the collision time between molecules—a very
short time typically 10−9 seconds at room temperature and pressure. On the other hand we might encounter
much longer relaxation times. For example if we take a large box of gas but now prepare it in a state where
one half of the box is at higher density than the other half, there will be an oscillatory motion of the gas that
we call sound, that decays on much longer time scales, perhaps seconds or longer. Usually we will not have
any doubt when we have waited long enough, although there are some counter examples to this, where the
characterization as equilibrium or nonequilibrium may not be clear. An example is familiar window glass,
and other similar very slowly relaxing systems that are now called “glassy”.
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2.1.2 Role of Conserved Quantities

How can we prepare two similar systems in the identical equilibrium state? On what properties of the system
does the equilibrium state depend? Clearly these properties must be ones that do not change even in the very
long waiting time. We can immediately make a list of such quantities: these are the ones that are conserved
by the dynamics of the isolated system, namely the ones satisfying the familiar conservation laws. Examples
are the total number of particles, or the total energy. In some situations other quantities may be conserved: for
example, depending on the geometry of the system, the momentum or angular momentum may be conserved.
In addition there may be dependence on the volume of the system.

As an example consider a box containing a gas or liquid. Then it is a familiar result that specifying the
amount of a one component gas or liquid (i.e. the number of molecules)N , the volumeV , and the energy
E, is sufficient to completely determine the equilibrium state. This means that if these quantities are the
same for two similar systems, then all other macroscopic or statistically averaged quantities will also be
the same. More generally, the thermodynamic properties of an isolated system are completely determined
by the volume and the values of the conserved quantities of the system. These are therefore known as
thermodynamic variables. (Below we will see that in ordered states at temperatures below certain phase
transitions it is appropriate to introduce additional thermodynamic variables known as order parameters.)

2.1.3 Entropy and the condition for equilibrium

The second law of thermodynamics introduces a new thermodynamic variable called the entropyS that is
a unique function of the thermodynamic state and is useful in characterizing the equilibrium state and the
approach to equilibrium. (The entropy is also useful in understanding the partition of energy into work and
heat.) For the one-component gas or liquid the entropy is a unique function of the energy, volume and number
of molecules:

S = S(E, V,N). (2.1)

The entropy of a system is extensive—it increases proportionately as like pieces are added to the system—and
is additive between systems, so that the entropy of two uncoupled or weakly coupled systems is the sum
of the individual entropies. Increasing entropy is intuitively associated with increasing disorder. Statistical
mechanics gives the microscopic significance as the logarithm of the number of microscopic configurations
consistent with the macroscopic thermodynamic state, e.g. defined byE,V,N , with a proportionality
constant that is the Boltzmann constantkB .

A simple example will show how the entropy is related to the condition for equilibrium. Consider an isolated
system divided into two weakly coupled halves. Initially the system is in thermodynamic equilibrium, but
we now take the system away from equilibrium by transferring an energy1E from one half to the other. If
the two halves were isolated from one another, as well as from the rest of the universe, the energy of each
subsystem would be conserved, and the perturbation would not relax. For weak coupling the time scale for the
relaxation will be correspondingly long. In fact for macroscopic systems, the weak coupling automatically
arises as a surface to volume ratio—the coupling of the subsystems is only over the area of contact, whereas
the energy1E is distributed over the volume of the subsystem.

Since the relaxation between the systems is slow, we can suppose that at any time during the relaxation,
the state of each subsystem is closely approximated by the state it would be in if it were isolated with energy
content equal to the instantaneous value of the (relaxing) energy, i.e.E1 for the first subsystem andE2 for
the second subsystem, with a fixed total energyE

E1+ E2 = E. (2.2)

There is then some particular partition of the total energyE
eq

1 , Eeq2 that corresponds to the thermodynamic
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Fig. 2.2. Two subsystems if an isolated system in contact by energy exchange.

equilibrium state of the whole system. (The true equilibrium state of the combined system would also involve
fluctuations of the energy partition about these values. However, for macroscopic systems the fluctuations
are small—proportional to 1/N1/2 withN the number of particles in the system—and so this difference may
be neglected.)

The second law of thermodynamics (justified by statistical mechanics) tells us that the entropyS increases
in the approach to equilibrium and is maximized in the equilibrium state. The total entropy of the system is
to a very good approximation the sum of the component entropies

S = S1(E1)+ S2(E2) = S1(E1)+ S2(E − E1) (2.3)

whereS1(E1), the entropy of subsystem 1, can again be evaluated as if system 1 were completely isolated
with energy contentE1, etc. The equilibrium state is given by maximizingS with respect toE1 with the
constraint of fixed total energyE, Eq.(2.2). In greater generality the entropy is a function of all the conserved
variables of the isolated system. The equilibrium condition for two weakly coupled macroscopic subsystems
is then the maximization of the entropy with respect to the partition of each conserved variable that can flow
between the subsystems.

2.1.4 Conjugate thermodynamic variables

The maximization of the entropy with respect to the energy partition is simply given by differentiating Eq.(2.3)
with respect toE1, i.e. the equilibrium condition is

T1 = T2, (2.4)

where a new variable we call the temperatureT is defined by

1

T
= dS

dE
. (2.5)

where implicitly we are holding all other variables such as the volume of the system constant. (To de-
rive this expression we use the final form of the equality in Eq.2.3) and note that∂S2(E − E1)/∂E1 is
−∂S2(E)/∂E|E=E−E1.) Note that sinceS andE are functions of the thermodynamic state, so too isT :
the temperature is another thermodynamic variable. Through this idea of the equilibrium of subsystems
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under the exchange of quantities of the conserved variables we are thus led to the introduction of conjugate
thermodynamic variables, in this case the temperatureT conjugate to the energyE.

Number  N 1 Number  N 2

JN

JE

Fig. 2.3. Two subsytems of an isolated system that can exchange both particles and energy.

Generalizing this idea to subsystems that can exchange particles as well as energy introduces the chemical
potentialµ conjugate to the number of particlesN (actually by convention−µ/T ) so that

1

T
=
(
∂S

∂E

)
N,V

,
µ

T
= −

(
∂S

∂N

)
E,V

. (2.6)

Systems that can exchange particles as well as energy are in equilibrium when both the temperatures and
chemical potentials are equal. Depending on the physical system there might be other conserved quantities
and corresponding conjugate fields that are equal in equilibrium, for example a velocityEV conjugate to the
momentum EP (a fluid will come into equilibrium with containing walls when the velocities are equal), a
magnetic field EH conjugate to a conserved magnetizationEM, etc.

Expressing the differential of the entropy in terms of its partials we can write an equation that is known as
the thermodynamic identity

dS = 1

T
dE + P

T
dV − µ

T
dN + · · · (2.7)

or in its more conventional form

dE = T dS − PdV + µdN + · · · (2.8)

We have included the “PV ” work done for a change of volume, and the· · · allows for other conserved
quantities which may be present depending on the system. It is convenient to write the thermodynamic
identity in the general form

dS = −
∑
i

XidYi (2.9)

with Yi the conserved variables (taking a small liberty and including the volume in the list of conserved
variables) andXi the conjugate fields.

Note that the conserved quantities are extensive variables, whereas the conjugate fields are intensive
variables.
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2.1.5 Equilibrium in contact with “baths”

Number  N 1 Number  N 2

JN

JE JE

Fig. 2.4. Equilibrium in contact with a heat bath (i.e. at fixed temperature).

The equilibrium of two subsystems occurs at equal temperature, chemical potential, etc. If we now consider
just one of the subsystems as the system of interest, we arrive at a second construction scheme for equilibrium:
a system in contact with a source of energy at temperatureT , a source of particles at chemical potentialµ

etc., will come to an equilibrium state at long times. Since we do not want the energy and particles absorbed
by the system to affect the parametersT andµ we will require that the sources be arbitrarily large, and call
them “baths”. If the system itself is large enough, the equilibrium defined in this way is essentially the same
as the equilibrium of the isolated system. There are some differences—obviously the energy of the system
can fluctuate if it is in contact with an energy bath at some temperature, but not if it is isolated—but these
fluctuations are tiny for macroscopic systems.

2.1.6 Thermodynamic Potentials

There are certain advantages in formulating calculations at fixed temperature, for example, rather than
fixed energy. As is shown in any standard thermodynamic text, a useful procedure is to introduce a new
thermodynamic potential called the free energyF related to the energy by what is known as a Legendre
transformation

F(T ,N, V ) = E − T S. (2.10)

By straightforward differentiation and using the thermodynamic identity Eq.(2.8) this leads to the differential
form

dF = −SdT − PdV + µdN + · · · . (2.11)

Now we can ask about the equilibration of two subsystems that are both in contact with an energy reservoir
at temperatureT . For example we can ask for the equilibrium configuration of the partition of the total
number of particlesN between the two subsystems. The equilibrium condition is then to minimize the total
free energyF = F1(N1) + F2(N − N1) with respect toN1, holding the temperatureT and the volumeV
fixed—it is easy to see from Eq.(2.11) that this reproduces the result of equal chemical potentials. (The fact
that the free energy isminimizedat fixedT whereas the entropy ismaximizedis simply a result of the choice
of the sign convention used in definingF .)
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Various other thermodynamics potentials can be introduced by appropriate Legendre transforms depending
on the choice of independent variables. We do not need to go into the full details here. The main point to
make is that the equilibrium of an isolated system, or of a system in contact with appropriate baths to
fix temperature etc., is given by finding the stationary point of an appropriate thermodynamic potential
which is a function of the thermodynamic variables and is additive between macroscopic subsystems. These
minimization or maximization principles provide powerful tools for determining the properties of equilibrium
systems. At a macroscopic level they provide a global description of the whole system. At a microscopic level
expressions for the thermodynamic potentials can be written down directly in terms of the energy expression
for the individual particles: evaluating the rich consequences of these expressions is the domain of statistical
physics. A major difficulty of the study of systems far from equilibrium is that simple minimization principles
do not seem to exist.

2.2 Nonequilibrium

Having defined a system in (thermodynamic) equilibrium, a nonequilibrium system is anything else! Thus a
system that is neither simply isolated from the rest of the universe, nor in contact with a constant temperature,
and/or chemical potential bath, will be nonequilibrium. A system that is in the transient before reaching
equilibrium is also nonequilibrium, for example a plasma with a non-Maxwellian velocity distribution. An
interesting nonequilibrium situation that will arise in later examples is a system in contact withtwoconstant
temperature baths that are atdifferent temperatures. The nonequilibrium state may also be maintained by
external fields, such as the electric field driving an electric current around a conducting loop.

Features that may be associated with nonequilibrium are dynamics (for example the transient relaxation
towards equilibrium), and currents of the conserved quantities from one part of the system to another.
Indeed we have seen that the lifetime of the nonequilibrium state is likely to be very short unless there are
macroscopic disturbances in the conserved quantities away from the equilibrium distribution. Accompanying
these disturbances will be macroscopic currents of the conserved quantities.

A particularly interesting nonequilibrium situation is one in which there is no time dependence (i.e. a
steady state situation), but one in which currents of the conserved variables are flowing, driven by injection at
one boundary and subtraction at another. Since the dynamics of the system are dissipative, there will usually
be an injection of energy, energy currents within the system, sometimes a transformation between different
forms of energy (e.g. mechanical or chemical to heat), and then the subtraction of energy to maintain the
steady state. For example the system in contact with two heat baths at different, but constant, temperatures,
will exhibit energy currents transporting heat between the two baths. Such sustained non-equilibrium states
provide the opportunity of accurate experimental and theoretical investigation, and are the main focus of this
book.

2.3 Near equilibrium

There are many powerful ideas and tools for studying equilibrium systems. This is the subject of many
textbooks on thermodynamics and statistical mechanics. It might be expected that nonequilibrium systems
that arenearequilibrium, i.e. generated by small perturbations form equilibrium ones, are also amenable to
treatment, and this is indeed the case. We have seen that there may be very different time scales associated
with the relaxation towards equilibrium. We will try to understand the slow relaxation processes occurring
on time scales much longer than typical microscopic time scales. This idea goes under the general label of
the Onsager approach. The slowly relaxing degrees of freedom are the ones corresponding to the quantities
of macroscopic subsystems that are the conserved variables of the isolated system.

Let us first return to our simple example of a system divided into two subsystems by a partition that allows
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Temperature  T1 Temperature  T2

Fig. 2.5. Relaxation of a temperature difference.

energy to flow weakly between the two subsystems, but no flow of the other conserved quantities. The
equilibrium of the two subsystems is then given by the equality of the temperaturesT1 = T2. Clearly, if
we prepare the system with the two subsystems at different temperatures, this is a nonequilibrium state, and
we expect an energy current to flow between the subsystems moving the system towards equilibrium. The
situation is particularly simple for small temperature differencesδT = T2 − T1 about a mean temperature
T1 ' T2 ' T , because then the energy currentJE between the subsystems should be proportional to the
small temperature difference by simple Taylor expansion (it is zero for no temperature difference)

JE = −K δT . (2.12)

( Let us defineJE as positive if it isfromsubsystem 1to subsystem 2.) HereK is a “kinetic coefficient” that
depends on the strength of the coupling of the two subsystems.

Equation (2.12) can then be used to describe the relaxation process. The energy current gives us the rate of
increase of energy on one side, and the rate of decrease on the other side. Since other conserved densities are
fixed, the temperatures of the subsystems will change at a rate proportional to the rate of change of energy

Ṫ1 = Ė1/C1 = −JE/C1 (2.13a)

Ṫ2 = Ė2/C2 = JE/C2 (2.13b)

whereC1 is the thermal capacity of subsystem 1, the proportionality constant relating small changes of
temperature to small changes of energy content. A key point is that since the relaxationbetweenthe systems
is slow, each system may be taken as internally in equilibrium, so that the proportionality constant between
changes of energy and temperature is theequilibriumvalue of the specific heat. Thus we find

δṪ = −(K/C) δT (2.14)

with C−1 = C−1
1 + C−1

2 giving an effective combined thermal capacity. This equation yieldsexponential
relaxation with a time constant

τ = C/K (2.15)

given by macroscopic quantities—we use the knowledge thatδT is small to recognize that we may takeC
andK to be constants, equal to their values at the mean temperatureT .
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Since the energy current is the process of the approach to equilibrium, the entropy must increase in this
relaxation. Using the thermodynamic identity we have

Ṡ = Ṡ1(E1)+ Ṡ2(E2) (2.16)

= 1

T1
Ė1+ 1

T2
Ė2 (2.17)

' −JE δT /T 2 (2.18)

= K (δT /T )2 (2.19)

where in the third step we have kept terms up to first order inδT . Thus the second law of thermodynamics,
that the entropy increases as an isolated system returns to equilibrium, tells us that the kinetic coefficientK

must be positive.
The results are readily generalized to study continuum dynamics. Considering only the temperature

and energy variables, a macroscopic system is in equilibrium when the temperature is uniform in space.
Correspondingly, a spatially varying temperature will lead to an energy flow, and for small, slowly varying,
perturbations the energy current will be proportional to the gradients of the temperature. It is useful to
introduce the energy density (energy per unit volume)e, and the energy current densityjE (so that the energy
flow across a surfaceS is

∫
S

jE • dS). The conservation of energy now takes the form

∂te = −∇ • jE. (2.20)

(using the notation∂t for the partial derivative∂/∂t) where the energy current is proportional to the spatial
gradient of the temperature

jE = −K∇T (2.21)

with K the familiar thermal conductivity (not the same constant as in Eq.(2.12)). Again the law of increase
of entropy places constraints on the coefficient, namely thatK must be positive. The equations of motion
Eqs.(2.20,2.21) are closed if we know how the energy density depends on the temperature. This relationship
is again taken to be the same one as in equilibrium, i.e. by the appropriate specific heat, since the dynamical
equations already represent the leading order expansion in the deviation from equilibrium. The dynamical
equations are linear, and for a given finite physical system the evolution will be the sum of exponentially
decaying modes of the system. (An infinite system has an infinite number of modes, and the relaxation may
then be nonexponential.)

Equation (2.21) is the familiar equation for the conduction of heat, and could easily be written down
from phenomenological considerations. This allows us to make the obvious but important point that the
familiar macroscopic equations of continuum mechanics, heat and particle diffusion etc., that we will later
use, are fully consistent with the general principles of thermodynamics. In particular, inanysolution to the
macroscopic dynamical equations, a positive rate of entropy production is guaranteed by the formalism.

If we assume that the thermal conductivityK is independent of temperature over the range encountered in
an experiment, and also relate changes in the energy densitye to changes in temperature through the specific
heat per unit volumeC that may also be considered temperature independent, the two equations (2.20) and
(2.21) can be combined into the single equation

∂tT = κ∇2T (2.22)

with κ = K/C. This equation takes the form of a time dependentdiffusion equationfor the temperature,
and the energy densitye satisfies an identical equation. The coefficientκ, with the dimensions of a diffusion
constant, is known as the thermal diffusivity. Since equations like (2.20) and (2.21) are a direct consequence
of a conservation law and a flux proportional to gradients, we will see diffusion equations, or diffusion terms
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supplemented by additional terms describing other physical phenomena, commonly appear as equations for
pattern forming systems.

To summarize, we have learned from a simple example the following results:

• A state near equilibrium decays exponentially towards equilibrium.
• The dynamics is given by equations of motion that are on the one hand the usual phenomenological

equations (in our simple example the heat current proportional to temperature difference) and on the other
hand derivable from the fundamental laws of thermodynamics. Necessarily the equations of motion are
consistent with the laws of thermodynamics.
• The law of the increase of entropy places constraints on thecoefficients of the dynamical equations, not

on the solutions to the equations. Any solution to the dynamical equations necessarily is consistent with
the law of the increase in entropy, and we do not gainadditionalconstraints on the solutions by applying
this law.

These results may be extended to the general case of coupled equations for more than one conserved
quantity. For example in a fluid we need to consider the thermodynamic consequences of the conservation
of mass and momentum as well, leading to the familiar equations of fluid dynamics (including viscous
dissipation etc.). The general approach is the subject of the following étude.

Étude: Approach to equilibrium for the multivariable case. Suppose there areM conserved quantitiesYi . The
equilibrium state for two discrete subsystems is given by equality of theM conjugate fieldsXi

Xi1 = Xi2 (2.23)

and for small deviations from equilibrium,δXi = Xi2 − Xi1 small, we expect currentsJYi = Ẏi2 = −Ẏi1 of theYi
proportional to these differences

JYi = −
∑
j

γij δXj . (2.24)

The requirement of positive entropy production leads to constraints on the coefficientsγij . In addition, through the
profound idea of relating the decay of prepared initial states to the dynamics of internal fluctuations Onsager showed
that there are relationships between the off diagonal coefficients. These relationships depend on the time reversibility
of the microscopic dynamics, and the form of the relationship depends on the signature of the variableYi under time
reversal (a density is invariant, a velocity changes sign etc.). IfYi andYj have the same signature under time reversal,
then theγ matrix elements are symmetric

γij = γji (same time reversal signature) (2.25)

otherwise they are antisymmetric

γij = −γji (opposite time reversal signature). (2.26)

As in the simple case of thermal relaxation we can follow the dynamics approaching equilibrium. The changes of
the variablesXi1 will be proportional to the changes of the amounts of the conserved quantitiesYj1

δXi1 =
∑
j

βij1δYj1, (2.27)

with β an inverse susceptibility matrix, a generalization of the inverse thermal capacity.
The the dynamics is now given by

δẊi = Ẋi2− Ẋi1 (2.28)

=
∑
j

(
βij2Ẏj2− βij1Ẏj1

)
. (2.29)

If we write

β = β1+ β2 (2.30)



54 Equilibrium Versus Nonequilibrium

as the combined inverse susceptibility matrix, we finally find

δẊi = −
∑
j

(βγ )ij δXj . (2.31)

The solution to this set of linear ordinary differential equations with constant coefficients is the sum of exponentially
decaying solutions, with the decay rates given by the eigenvalues of theβγ matrix—again we haveexponentialdecay
towards equilibrium. Complex eigenvalues correspond to decaying oscillations.

We can now look at the rate of entropy production in the dynamics:

Ṡ = −
∑
i

Xi1Ẏi1−
∑
i

Xi2Ẏi2 (2.32)

= −
∑
i

(Xi2−Xi1)JY i (2.33)

=
∑
ij

γij δXiδXj . (2.34)

Theij andji terms corresponding to variables of different time signature cancel in this sum. The remaining sum must
be positive definite, and this provides the constraints on the values of the dissipative kinetic coefficientsγij . With these
constraints on thecoefficientssatisfied, any solution of the dynamical equations Eq.(2.31) necessarily corresponds to
a positive entropy production.

The generalization to the continuum limit proceeds as before. In the continuum limit the macroscopic system is in
equilibrium when all the conjugate fieldsXi are uniform in space. Correspondingly, spatially varying values of these
fields will lead to currents of the conserved quantities. We introduce the density of the conserved quantitiesyi (the
quantity ofYi per unit volume), and the corresponding currentjYi such that the conservation law is

∂tyi = −∇ • jYi . (2.35)

For small, slowly varying perturbations the currents are proportional to the spatial gradients of the conjugate fields

jYi = −
∑
j

γij∇Xj (2.36)

with γ a matrix of transport coefficients. The off-diagonal matrix elements are less familiar, and are analogous to
thermoelectric coefficients. One example that is encountered in the study of convection in fluids that are mixtures
of two components, such as water and alcohol, is that a gradient oftemperaturemay drive a current in theimpurity
concentration. There are constraints on theγij from the requirement of positive entropy production, and Onsager
symmetry relationships depending on the time reversal characteristics of the variablesyi .

2.4 Far from equilibrium

The Onsager theory of near equilibrium leads to perturbations that decay exponentially towards equilibrium.
This results derives simply from the assumption of small perturbations, so that only terms linear in the
deviation from equilibrium are retained. We may characterize a system as far from equilibrium when the
linearization is no longer valid and deviations from the linearization lead to qualitatively new effects. A key
feature of these systems is that the equations of motion will be nonlinear, since the linear expansion must
necessarily break down. Thus we no longer have the useful tools of global thermodynamics and linearization,
and the study of these systems correspondingly becomes much harder.

We will concentrate almost entirely on systems that although far from equilibriumglobally, are near
equilibrium locally. This allows us to treat the systems using the equations derived from the Onsager
approach to nonequilibrium thermodynamics, or equivalently the standard equations of fluid dynamics,
chemical reaction and diffusion, etc. The appropriate systems are macroscopic ones in which for example
the temperature deviations across the system are “large”, but the spatial gradients of the temperature are
“small”. Temperature differences on a characteristic microscopic scale (e.g. the mean free path for collisions



2.5 Thermal fluctuations 55

in a gas) will be small. We may then take pieces of the system that are small enough that the linearization
procedure above is sufficiently accurate, but large enough that a macroscopic description is also sufficiently
accurate. Thus locally the currents of the conserved quantities are proportional to the gradients of the
conjugate fields, with the same coefficients as introduced above (maybe depending on the local values of the
temperature etc.). Furthermore the conjugate variables vary only slightly across these subsystems, so that
the relationship between changes in the conserved densities and the conjugate variables, such as the specific
heat relating energy and temperature changes, may again be taken to be the equilibrium equation of state.
Thus the equations of motion will again be given by Eq.(2.20) and Eq.(2.21) (or more generally by Eq.(2.35)
and (2.36)), but with coefficientsC andK (or γ andβ) that in general are functions of the local conjugate
variables (the temperatureT or more generally theXi). Again these dynamical equations and the Onsager
constraints on the kinetic coefficients guarantee positive entropy production inanysolution of the dynamical
equations.

In practice, rather than pursuing the formal Onsager approach, the equations of motion are often written
down from phenomenological considerations. In some cases, motivated by the aim of simple tractable
equations that perhaps capture specific aspects of a problem, grossly simplified “model” equations may be
used, for which there is no direct connection to an underlying thermodynamic system. It is therefore useful to
consider issues such as equilibrium versus nonequilibrium directly from the form of the dynamical equations.
Here the important issue is whether the equations are dissipative or conservative. Dissipative macroscopic
systems we associate with a relaxation towards a single state or a reduced set of states from a broad range of
initial conditions. In the language of dynamical systems we expect phase space volumes to contract in time.
These equations must display a sense of time, and so are not invariant under time reversal. Conservative
macroscopic systems are invariant under time reversal, and so do not show a systematic trend towards a
subset of states as time advances. Phase space volumes are preserved by the dynamics. Pattern formation is
the spontaneous development of spatial structures from a wide range of initial conditions. We would expect
this tendency to be stronger in dissipative systems.

2.5 Thermal fluctuations

The familiar macroscopic equations of fluid dynamics, thermal and particle diffusion etc. can be thought
of as averages over the underlying microscopic molecular dynamics. At macroscopic length scales the root
mean square fluctuations about the mean values are much smaller than the mean values by factors of order
N−1/2 whereN is the number of molecular degrees of freedom in the averaging volume. This is because the
fluctuations tend to cancel in the summation to form the macroscopic variable. For the length scales of order
mm,cm, or larger of most pattern forming systems the size of the fluctuating corrections to the macroscopic
deterministic equations are very small indeed.

There are some situations however where the residual fluctuations are important. One example is in
answering how the growing perturbation about an unstable solution is initiated—in principle even an unstable
solution may persist indefinitely if there is nothing to give an initial small kick away to establish a perturbation
that then continues to grow. In almost all cases the small kick is supplied by experimental imperfections
such as slight deviations of the geometry from the ideal, or an imperfectly controlled environment or initial
condition—or from another point of view the idea that a precise solution exists but is unstable is a theoretical
oversimplification, so that there is no issue of where an initial kick might come from. In some systems
however very careful experiments can be done to eliminate these “external” sources driving the unstable
mode, and uncover the intrinsic driving due to thermal fluctuations even on the mm length scale. In addition,
for phenomena at smaller length scales, the residual effects of molecular fluctuations may be more apparent.
One example is the formation of side branches in the dendritic growth of crystals apparent in the pictures of
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snowflakes in Chapter1: as we will explain further in Chapter12 there is good evidence that side branches
develop through the selective amplification of thermal noise at the tip of the dendrite.

Fortunately we do not have to revert to molecular theory to include these small fluctuation effects. The
constraint that the fluctuating forces must yield a distribution of the thermodynamics variables given by
the Boltzmann factor (i.e. probability proportional to exp(−βE) with β = 1/kBT with kB the Boltzmann
constant andE the energy, or more precisely the free energy, of the fluctuation), and the observation that
the stochastic effects due to individual molecular collisions act on time scales very short compared to the
macroscopic phenomenon of interest, are sufficient to pin down the strength and character of the fluctuating
forces. A profound result of statistical mechanics known as the fluctuation-dissipation theorem in fact directly
relates the strength of the fluctuating forces to the dissipative kinetic coefficients in the macroscopic equations,
and to the temperature. Examples the reader may be familiar with are the expression for the voltage noise
source associated with any electrical resistance known as Johnson noise, and the random forces on a particle
immersed in a fluid that lead to Brownian motion. The precise expression for the fluctuation corrections
to the equations of fluid dynamics and heat flow can be found in Vol. 6 of the Landau and Lifshitz series
on Theoretical Physics. We emphasize again though, that it is only in very careful experiments designed
specifically to seek out the phenomenon, or in a very small number of examples of patterns in nature that
are at micron length scales, that these fluctuating forces arising from the tiny residual effects of molecular
fluctuations not quite cancelling in averages over macroscopic regions become evident.

2.6 Phase transitions and broken symmetries

The idea of phase transitions is important in equilibrium physics, and analogous phenomena play an equally
important role in the formation of structures in nonequilibrium systems. Phase transitions are also important
to our discussion because they lead to states that require additional thermodynamic variables for a complete
characterization, requiring us to expand our list of thermodynamic variables introduced above, through the
idea of broken symmetries. Again an analogous idea is key in the study of pattern formation far from
equilibrium.

We first review ideas about phase transitions with broken symmetries in a rather artificial but very sim-
ple model. This type of model was actually important in the development of the understanding of phase
transitions, and captures many of the important aspects of the physics.

Consider a simple thermodynamic system made up of a large numberN of spinssi (which we can just
think of just as arrows) that are arranged on a simple lattice (e.g. a cubic lattice in 3 dimensional space).
Suppose that each spinsi can only point in two directions, “up”si = +1 or “down” si = −1. (This would
be the case for spin12 quantum spins where the up-down direction is an arbitrary choice of the quantization
directions, or for other spins in a system with anisotropy energies such as crystal field energies that favor two
degenerate opposite orientations with respect to others.) Now suppose that there is an energy of interaction
between nearest neighbor spins that is lower if the spins are parallel. This means the total energy can be
written

E = −J
∑
i,j
n.n.

sisj (2.37)

with J the strength of the interaction and the sum running over all nearest neighbor pairs. This gives us a
simple model of a ferromagnet, known as the Ising model.

At high temperatureskBT >> J where thermal fluctuationskBT are much larger than this interaction
energy, the interaction will be unimportant, and the individual spins will fluctuate randomly up or down. The
total macroscopic spin,S =<∑

i si > summed over all lattice sites and averaged over thermal fluctuations,
will be zero.
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On the other hand at low temperatures the interaction favors parallel alignment of spins. At low enough
temperatures the interaction will dominate, and the system will tend to its ground state. However we see
that there are two possible degenerate ground states in which all the spins are parallel: all spins up or all
spins down. The total spinS is eitherN or−N . In principle, since the two configurations are degenerate,
we might imagine the physical state to be one with equal probability of residing in the two possibilities.
However because of the macroscopic difference between the two configurations, if we prepare the system in
one state (sayS = +N ) there would be essentially zero chance of the system fluctuating to the degenerate
configurationS = −N . This is true at any temperature for whichS isO(N) andN is macroscopic (e.g. 1023

for a system size of order cm), since the energy barrierEb between the two states will also be a macroscopic
quantity, and the probability of fluctuations between the configurations, proportional to the Boltzmann factor
e−Eb/kBT will be horrendously small.

A unique characterization of the thermodynamic state of the spin system at low temperatures therefore
requires the usual conserved variables, and in addition an “order parameter” that takes the value “up” or
“down” and tells us which of the two macroscopically different configurations the system is in. (It is
conventional to include the strength of the ordering in the definition of the order parameter: thus we could
use the mean spinS, where the sign tells us the direction of the ordering, and the magnitude tells us the
strength of the ordering.)

To summarize, the interacting spin system undergoes a phase transition as the temperature is lowered
through some transition temperatureTc. Above this temperature the system is “disordered” and the order
parameter (the macroscopic spin or “magnetization”)S = 0. Below this temperature the system becomes
“ordered” with |S| taking on a value that is macroscopic (extensive). The two possible signs ofS give
degenerate, equivalent states, and either one may be “chosen” by the system. This is an example of a “broken
symmetry” since the ordered state (S either up or down) does not have the full symmetry of the interactions
(which are invariant under changing the sign of all the spins) and of the high temperature phase. The value
of the transition temperatureTc is set by the strength of the interaction. For example for our spins on a cubic
lattice the transition temperature isTc ' 3.4J .

A generalization of this example is where the spins are arrows that can point in any direction, and the
interaction between neighboring spins (now vectors of some fixed magnitude)Esi andEsj depends only on the
relative orientationEsi • Esj . Again at high temperatures the system will be disordered, withES =<∑

i Esi >= 0.
Below some transition temperature we might find an ordered state with| ES| = O(N). Now the average spin
may point in any direction and we need to define an order parameter that specifies this direction (ES is a
suitable order parameter). The different directions are macroscopically different, but equivalent∗. We call
this an example of a brokencontinuoussymmetry (here the symmetry of rotations).

The formation of crystals is another example of a broken continuous symmetry. In this case the symmetry
of continuous translations is broken: it is useful to think of the atoms in the crystal as having a definite mean
position (together with small thermal fluctuations about these fixed positions), even though the underlying
interactions are invariant under all translations. This example will have direct analogies in pattern formation
is systems far from equilibrium. The familiar rigidity of a solid against shear is directly related to the broken
symmetry. Once we have specified the position of one lattice site, there is a preferred (lowest energy or free
energy) position of all other lattice sites, and a motion away from the preferred position, for example due to a
shear of the solid, costs energy—the solid has elasticity. To incorporate this energy into the thermodynamic
description we would need to expand the list of variablesYi in the thermodynamic identity Eq.(2.9) to
include the components of the shear strain, and the corresponding new conjugate variablesXi would be the
components of the shear stress.

∗ There are subtleties in terms of thermal fluctuations between nearby states known as spin waves that make this transition less robust than in the
discrete spin case. As a consequence the ordered state does not occur at finite temperature for one or two dimensional arrays of spins, but does
occur at finite temperature for three dimensional lattices.
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2.7 Bifurcations and phase transitions

In the theory of nonlinear dynamical systems the notion of bifurcations is introduced. A bifurcation is
a qualitative change in the character of solutions that occurs at particular parameter value. The study
of bifurcations in the equations describing systems far from equilibrium will be a prominent feature of
the following chapters. On the other hand a phase transition is the qualitative change in behavior of a
thermodynamicsystem at a particular parameter value (e.g. temperature). What is the relationship between
bifurcations and phase transitions?

First let us stress the formal differences. Mathematical bifurcation theory is derived for finite dimensional
phase spaces (i.e. a finite number of ordinary differential equations describing the time evolution of the
finite number of dynamical degrees of freedom of the system). On the other hand phase transitions strictly
occur only in the thermodynamic limit of an infinite size system with an infinite number of dynamical
degrees of freedom. This is because phase transitions occur in the presence of thermal fluctuations, and
only in the infinite system limit can there be sharp, qualitative changes of behavior in the face of such
noise. Since bifurcation theory usually treats macroscopic degrees of freedom, the influence of noise is not
usually considered: typically noise which appears additively in the dynamical equations would eliminate the
bifurcation, and the behavior would be smooth on varying parameters with no sudden qualitative change of
behavior.

There is however some overlap between the two phenomena. For example the “mean field theory” of a
phase transition, where the thermal fluctuations are neglected, yields a description of the phase transition
that can be considered a bifurcation. (The description is in terms of equations for a single variable, the order
parameter introduced above.) Since mean field theory is sufficient to give us much of our intuition about
phase transitions, this means that there are many concepts that carry over between the description of phase
transitions and bifurcations.

The study of pattern formation uses aspects of both the theory of phase transitions and bifurcation theory.
In as much as macroscopic equations of motion are used and thermal fluctuations are ignored, bifurcation
theory is an important tool. On the other hand, if we consider the ideal limit of an infinite system (so that
the complications of boundary effects can be neglected) and allow for the presence of thermal fluctuations
or other noise such as deterministic chaos, we would expect to recover many of the phenomena of phase
transitions, such as diverging fluctuations and perhaps non-rational power law dependences on parameters
near the transition point.

Exercises

2.1 Discuss whether the following are examples of equilibrium or nonequilibrium systems and give
arguments to justify your conclusions:

(a) A metallic rod under tension;
(b) A wood table with rich grain texture;
(c) A beaker of water rotating on a turntable;
(d) Water between two concentric cylinders, with the inner one rotating and the outer one fixed;
(e) A superconducting magnet with a persistent current;
(f) An electromagnet attached to a battery;
(g) A lake with a frozen surface.

2.2 Consider two cubic meter volumes of air in glass containers with walls 1mm thick. One contains air
at 100◦C and the other contains air at 0◦C. If the two cubes are placed into contact what is the time
scale for the temperatures to equilibrate. Is it reasonable to assume that the gas within one container
is internally close to equilibrium during this dynamic process?
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2.3 Carefully derive the equality of chemical potentials as the additional equilibrium condition (as well
as the equality of temperatures) for two macroscopic systems that can exchange particles and energy.

2.4 In metals the electrons fill energy states up to a maximum energy known as the Fermi energy, which
is then equal to the chemical potential of the electron in the metal. The work function tells us the
cost to remove an electron at the Fermi energy and take it out of the metal. If I allow two metals with
work functions 4eV and 5eV to come into equilibrium what is the electrostatic potential difference
that is set up between the metals. Can I connect wires to each metal making an electrical circuit and
use the potential difference as a battery?

2.5 Present arguments for how “slow” the spatial variation of the temperature in a gas at room temperature
and atmospheric pressure should be for the expressionjE = −K∇T to be a good approximation.

2.6 Thermoelectric effects: The charge transferred between two electrical conductors and the voltage
between them are a conserved quantity and the conjugate thermodynamic variable. Thermoelec-
tric coefficients quantify the interplay between temperature differences and charge flow (electrical
currents) and voltage differences and energy flow (heat currents). Find out about the various thermo-
electric effects—the Seebeck, Peltier andThomson effects—and show how to understand them within
the formulation introduced in the étude in section2.3. Find values of the thermoelectric coefficients
between a pair of metals, and verify the constraints established by the Onsager relationships.

2.7 Give a formal derivation of the diffusion equation for the concentrationc of an impurity dissolved
in a liquid

∂tc = D∇2c (E2.1)

starting from the basic laws of thermodynamics along the lines of the derivation leading to Eq.(2.22),
carefully explaining any approximations made.

2.8 A solution to the diffusion equation in the previous exercise is

c = N

8(πDt)3/2
exp

(−r2

4Dt

)
(E2.2)

giving the solution for the spreading ofN impurity molecules concentrated at the origin at time zero.
Consider the thought experiment of opening a bottle of perfume in one corner of a room with no
air currents and asking when someone in the opposite corner would first smell the perfume? The
mathematics says that someone should smell the perfume instantly since the solution immediately
develops a tail out to infinity, but this can’t possibly be the case physically because of finite propagation
speeds. What goes wrong with the mathematical description, and what is a physically sensible
estimate for when a sensitive nose would first smell the perfume?

2.9 A simple model for some chemical and biological systems that might yield patterns is described by
a set of reaction-diffusion equations for some fields (concentrations etc.) of the form

∂tui =
∑
j

aijuj +Di∇2ui + . . . (E2.3)

where theaij are rate constants and theDi are diffusion constants. Estimate bydimensionless
analysisthe length scale on which the a stationary pattern might form and the velocity at which a
wave pattern might propagate for the following systems:

(a) The “Belousov-Zhabotinski” reaction for whicha ∼ 0.2s−1,D ∼ 2× 105cm2s−1;
(b) The axon of the giant squid for whicha ∼ 3× 103s−1,D ∼ 3.4× 102cm2s−1;
(c) Cardiac action potentials for whicha ∼ 3× 102s−1,D ∼ 0.6cm2s−1;
(d) Cyclic AMP waves in slime mold for whicha ∼ 10−2s−1,D ∼ 4× 10−6cm2s−1;
(e) The spread of a rabies epidemic by foxes for whicha ∼ 160year−1,D ∼ 200km2year−1;
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(Herea andD denote typical entries in theaij andDi matrices.)
In examples(iii)(b) and(iii)(c) the “diffusion constant”D is actually given by(CR)−1 whereC

is the capacitance per unit length andR is the resistance per unit length of nerve or muscle fibre.
Show that this combination does indeed have the dimensions of a diffusion constant.

2.10 Write down the general equations for the energy and impurity currents in a system with small
temperature and chemical potential gradients.

2.11 Suppose in the Ising spin model discussed in this chapter the anisotropy energy favoring the “up”
and “down” orientations rather than a “sideways” orientation is of the form

EA = JA(1− cos2 θ) (E2.4)

with θ the angle of the fixed length spin from the vertical. Thenθ = 0 corresponds to spin up, and
θ = π to spin down, and these states have equal anisotropy energyEA = 0. On the other hand an
orientation ofθ = π/2 has the positive energyEA. For simplicity we supposeJA = J .

Estimate the probability for all the spins in a 1cm3 sample to rotate together from the nearly-
all-aligned-up state to the degenerate nearly-all-aligned-down state at a temperatureT = 0.1J/kB .
How small would you have to make the sample for the Boltzmann probability factor to be (a) 10−12

and (b) 10−6.
Can you think of any lower energy pathways connecting the two states?

2.12 One way to derive the Onsager relationships between the transport coefficientsγij for the continuum
description Eq.(2.36) is to consider the amplitudesX(q)

j andy(q)j of a long wave length sinusoidal
variation of the conserved densities and the conjugate variables as thermodynamic variables, i.e.

Xj = X(q)

j cosqx (E2.5)

yj = y(q)j cosqx. (E2.6)

With these definitions:

(a) Write down the thermodynamic identity including the variablesX
(q)

j andy(q)j for a system of
volumeV . (Assumeq is small so that the wavelength is macroscopic, but thatq−1 is small
compared to the system size.)

(b) Write down the time dependence of they(q)j in terms of theX(q)

j and the transport coefficients
γij using the continuum equations Eq.(2.35), (2.36).

(c) Using these two parts, and the discussion of the Onsager relationships for discrete variables,
you should now be able to derive the Onsager relationships forγij .

(d) Derive the constraints on theγij from requiring the positivity of the entropy production.


