
BNU Class Notes

Mot ivation for Fundamental Postulate (Classical)

Hamiltonian formulation of the dynamics

ForN particles there are 3N coordinatesq1, q2 . . . q3N and 3N conjugate momentap1, p2 . . . p3N . Usually
these would be the Cartesian coordinatesx, y, z of each particle and the corresponding momentapx, py, pz.
But sometimes other choices are convenient, e.g. for diatomic molecules we could use center of mass
coordinates and separation and angular coordinates, together with the appropriate momenta (see a text book
on mechanics for how you decide on the momentum conjugate to each coordinate).

The equations of motion arefirst orderdifferential equations

q̇i = ∂H

∂pi
, (1a)

ṗi = −∂H
∂qi

, (1b)

(dot denotes the time derivative), whereH(q1, q2 . . . q3N, p1, p2 . . . p3N, t) is theHamiltonian. For a system
with time independent conditions (no explicitt dependence inH ) the Hamiltonian is just the total energy
expressed in terms of coordinates and momenta. The Lagrangian-Hamiltonian formulation replacing New-
ton’s laws of motion applies for velocity independent forces. This is usually all we need to set up a statistical
mechanics problem. The one case of velocity dependent forces we commonly come across is the Lorentz
force in electromagnetism: in this case the Lagrangian-Hamiltonian formulation continues to hold—we will
discuss this case later on.

The 6N coordinates and momenta define thephase space: specifying the coordinate in this phase space
completely specifies the system now and in the future (via integrating Eqs. (1)). This is the key advantage of
using a description leading to evolution equations that arefirst orderdifferential equations.

vph

x

p The simple harmonic oscillator illustrates these ideas. For a
particle of massm tethered to a fixed point by a spring of spring
constantK the Hamiltonian for one dimensional displacement
x is

H = p2

2m
+ 1

2
Kx2. (1c)

The Hamiltonian equations give us thephase space velocity
vph = (ẋ, ṗ) = (p/m,−Kx). Check that this gives the usual
simple harmonic oscillator equationmẍ +Kx = 0. It is easy
to see that the dynamics traces out anellipsein the phase space.

Phase space distribution

A single point in phase space(q1, q2 . . . p1, p2 . . .) — which we will also write as(qi, pi) or schematically
as(q, p) — completely defines the state of the physical system i.e. defines themicrostate of the classical
particle system. For smallN we could explicitly follow the time evolution of(q, p) in phase space tracing
out a trajectory and defining a geometrical structure in phase space. This is the subject of dynamical systems
theory. ForN large we can only hope to keep track of the dynamics statistically. Thus we define aphase space
densityρ(q1, q2 . . . p1, p2 . . . , t) that tells us the probability of finding a system near(q1, q2 . . . p1, p2 . . .)

at timet . Precisely:
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ρ(q1, q2 . . . p1, p2 . . . , t) d
3Nq d3Np is proportional to the fraction of the members of the en-

semble with phase space point with coordinates betweenq1 andq1+ dq1, q2 andq2+ dq2 etc.,
and momenta betweenp1andp1+ dp1, p2 andp2+ dp2 etc.

Hered3Nqd3Np is written for the 6N dimensional volume element of sidesdq1, dq2 . . . dp1, dp2 . . ..
We do not normalizeρ so that it is a probability density—we will talk about the choice of proportionality
constant, motivated by quantum considerations, later.

Any property of the system is given by a function of the phase space coordinatef (q1, q2 . . . p1, p2 . . .).
For example for noninteracting particles the energy is given by the function

E = p2
1x

2m
+ p

2
1y

2m
+ p

2
1z

2m
+ p

2
2x

2m
+ · · · . (2)

Theensemble averageof such a quantity at timet is

〈f (t)〉 =
∫
. . .
∫
f (q, p)ρ(q, p, t)d3Nq d3Np∫
. . .
∫
ρ(q, p, t)d3Nq d3Np

(3)

where the denominator is needed because we did not normalize the distribution to unit probability.
An ensemble is said to bestationaryif for all time andat each (fixed) q and pthe phase space density is

time independent, i.e.
∂ρ

∂t
= 0 (4)

with the partial implying fixedq, p. Since the ensemble average〈f 〉 of any quantityf is time independent
with such a distribution, we suppose that an equilibrium system is represented by such a distribution.

Liouville’s Theorem

Liouville’s theorem will tell us a second property of the phase space density, namely that if we move
with a phase space point as it evolves under the Hamiltonian, the phase space density of the surrounding
neighborhood is constant.

First notice that Hamiltonian dynamics preserves “volumes in phase space”.

x x+∆x

p

x

p

p+∆p

Consider a small area with corners(x, p), (x + 1x, p), (x, p + 1p), (x + 1x, p + 1p). (These would
correspond to 4differentsystems of 1 particle moving in 1 dimension.) Under a small time intervalδt the
four points evolve under the Hamiltonian dynamics, and they now defining a new area. The length of the
side of length1x changes because the endpoints have differentx-velocities, and becomes

1x + ∂

∂x
(ẋ)1xδt +O(δt2). (5)
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(The different values oḟp will slightly rotate the side from horizontal, but only changes the length at order
δt2.) Similarly the length of the side of original length1p becomes

1p + ∂

∂p
(ṗ)1pδt +O(δt2). (6)

Thus the volume element in phase space (area in this example)1V (t) = 1x1p) evolves to

1V (t + δt) = 1V (t)
[
1+

(
∂

∂x
(ẋ)+ ∂

∂p
(ṗ)

)
δt +O(δt2)

]
, (7)

so that
d1V

dt
= 1V ∇ph · vph (8)

where the “divergence of the phase space velocity” is

∇ph · vph = ∂

∂x
(ẋ)+ ∂

∂p
(ṗ). (9)

This is zero for Hamiltonian dynamics.
The argument easily generalizes to the 6N dimensional volume element for the 6N dimensional phase

space ofN particles: Eq. (8) still applies with nowvph = (q̇1, q̇2 . . . ṗ1, ṗ2 . . .) and

∇ph · vph =
3N∑
i=1

(
∂

∂qi
q̇i + ∂

∂pi
ṗi

)
(10)

which is again zero for Hamiltonian dynamics.
Since the volume associated with a collection of phase space points remains constant under the dynamics,

the phase space density is constant as we follow a phase space point, i.e.ρ(q(t), p(t)) = ρ(q(t = 0), p(t =
0)) = ρ0, whereq(t), p(t) evolve according to the phase space dynamics. We write this as

dρ

dt
= 0 (11)

whered/dt is thetotal derivativefollowing a phase space point. This isLiouville’s theorem.

Equal Probabilities

Together, Eqs. (4) and (11) show that for an equilibrium Hamiltonian system the phase space density is the
same at every point visited by a trajectory in the phase space. In a complicated, many particle system we
might expect the phase space trajectory to visit every region of phase space that is not forbidden by the known
macroscopic conservation laws (i.e. conserved energy, particle number, and maybe other quantities such as
momentum, spin etc., depending on the details of the system)—this is the notion ofergodicity. In this case

ρ(q, p) = ρ0 over all accessible phase space. (12)

This is the fundamental postulate. The ensemble described by the distribution Eq. (12) is known as the
microcanonical ensemble.
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Formal Derivation

The conservation of probability is

∂

∂t

∫
V

dV ρ = −
∫
S

dS · ρvph (13)

with S the volume bounding some volumeV in phase space (the number of members of the ensemble within
V changes only because of the flux of phase-space points through the bounding surface). The divergence
theorem (Gauss’s theorem) reduces this to∫

V

dV

[
∂ρ

∂t
+∇ph · (ρvph)

]
= 0. (14)

Since this applies for any volumeV this implies

∂ρ

∂t
+∇ph · (ρvph) = 0. (15)

For Hamiltonian dynamics∇ph · vph = 0, and so we have

dρ

dt
≡ ∂ρ

∂t
+ vph · ∇phρ = 0. (16)

This is Liouville’s theorem.
For equilibrium∂ρ/∂t = 0 and then

vph · ∇phρ =
3N∑
i=1

(
∂H

∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi

)
≡ {ρ,H } = 0, (17)

usingvph = (∂H/∂p,−∂H/∂q). The summed quantity is known as thePoisson bracket{ρ,H }.
We havederivedthe result Eq. (17). Now we have to “guess” whatρ is consistent with this.
A sufficient condition onρ is

ρ(q, p) = ρ(H(q, p), C1(q, p), C2(q, p) . . .), (18)

whereH andCm are the conserved quantities (constant of the motion). For then

{ρ,H } =
∑
m

∂ρ

∂Cm

3N∑
i=1

(
∂H

∂pi

∂Cm

∂qi
− ∂H
∂qi

∂Cm

∂pi

)
(19)

(the summ runs over the conserved quantities withC0 ≡ H ). But the time dependence ofCm (zero for a
conserved quantity) is given by

0= Ċm =
3N∑
i=1

(
∂Cm

∂qi
q̇i + ∂Cm

∂pi
ṗi

)
=

3N∑
i=1

(
∂H

∂pi

∂Cm

∂qi
− ∂H
∂qi

∂Cm

∂pi

)
, (20)

hence showing such aρ satisfies Eq. (17).
The assumption of ergodicity is that the phase space trajectories visit every region of the phase space

consistent with the conserved quantities, e.g. there are no other “hidden” variables that constrainρ. Equation
(18) is the general result (and applies to other “ensembles” we will introduce a little later). For an isolated
system the quantitiesCm are rigorously constant, independent ofq, p. Hence, with the assumption of
ergodicity, the fundamental postulate results. Since the conditions for ergodicity in a precisely defined
physical system are not understood rigorously, the fundamental postulate provides a more secure foundation
for building the theory, and is usually the preferred starting point. The final justification is the excellent
agreement of the predictions based on this theory with observations.
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