

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006 26 **Amplitude Equations** Linear onset solution for stripes $\delta \mathbf{u}_{\mathbf{q}}(\mathbf{x}_{\perp}, z, t) = \begin{bmatrix} a_0 e^{i(\mathbf{q} - \mathbf{q}_c) \cdot \mathbf{x}_{\perp}} e^{\operatorname{Re} \sigma_{\mathbf{q}} t} \end{bmatrix} \times \begin{bmatrix} \mathbf{u}_{\mathbf{q}}(z) e^{i\mathbf{q}_c \cdot \mathbf{x}_{\perp}} \end{bmatrix} + \text{ c.c.}$ Onset solution Small terms near onset Weakly nonlinear, slowly modulated, solution $\times \quad \left[\mathbf{u}_{\mathbf{q}_c}(z) \, e^{i \mathbf{q}_c \cdot \mathbf{x}_\perp} \right] \quad + \quad \text{c.c.}$ $\delta \mathbf{u}(\mathbf{x}_{\perp}, z, t) \approx$ $A(\mathbf{x}_{\perp}, t)$ Complex amplitude Onset solution $A(\mathbf{x}_{\perp}, t)$ is the order parameter for the stripe state $A(\mathbf{x}_{\perp}, t)$ satisfies the amplitude equation. In 1d $[\mathbf{q}_c = q_c \hat{\mathbf{x}}, A = A(x, t)]$: $\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \partial_x^2 A - g_0 |A|^2 A, \qquad \varepsilon = (R - R_c)/R_c$ Forward

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006

Complex Amplitude

Magnitude and phase of A play very different roles

$$A(x, y, t) = a(x, y, t)e^{i\theta(x, y, t)}$$

$$\delta \mathbf{u}(\mathbf{x}_{\perp}, z, t) = ae^{i\theta} \times e^{iq_c x} \mathbf{u}_{\mathbf{q}_c}(z) + c.c.$$

- magnitude a = |A| gives strength of disturbance
- phase change $\delta\theta$ gives shift of pattern (by $\delta x = \delta\theta/q_c$)— symmetry!
- x-gradient ∂_xθ gives change of wave number q = q_c + ∂_xθ
 A = ae^{ikx} corresponds to q = q_c + k
- y-gradient ∂_yθ gives rotation of wave vector through angle ∂_yθ/q_c (plus O[(∂_yθ)²] change in wave number)

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006 The amplitude equation describes $\tau_0 \partial_t A = \varepsilon A - g_0 |A|^2 A + \xi_0^2 \partial_x^2 A$ growth saturation dispersion/diffusion

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006

Parameters

$$\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \partial_x^2 A - g_0 |A|^2 A,$$

- control parameter $\varepsilon = (R R_c)/R_c$
- system specific constants τ_0 , ξ_0 , g_0
 - $τ_0, ξ_0$ fixed by matching to linear growth rate $A = a e^{i\mathbf{k}\cdot\mathbf{x}_\perp}e^{\sigma_{\mathbf{q}}t}$ gives pattern at $\mathbf{q} = \mathbf{q}_c \hat{x} + \mathbf{k}$)

$$\sigma_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2]$$

♦ g_0 by calculating nonlinear state at small ε and $q = q_c$.

Back

Forward

30

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006 Scaling $\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \partial_x^2 A - g_0 |A|^2 A, \qquad \varepsilon = \frac{R - R_c}{R_c}$ Introduce scaled variables $x = \varepsilon^{-1/2} \xi_0 X$ $t = \varepsilon^{-1} \tau_0 T$ $A = (\varepsilon/g_0)^{1/2} \overline{A}$ This reduces the amplitude equation to a *universal* form $\partial_T \overline{A} = \overline{A} + \partial_x^2 \overline{A} - |\overline{A}|^2 \overline{A}$ Since solutions to this equation will develop on scales $X, Y, T, \overline{A} = O(1)$ this gives us scaling results for the physical length scales.

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006

Derivation

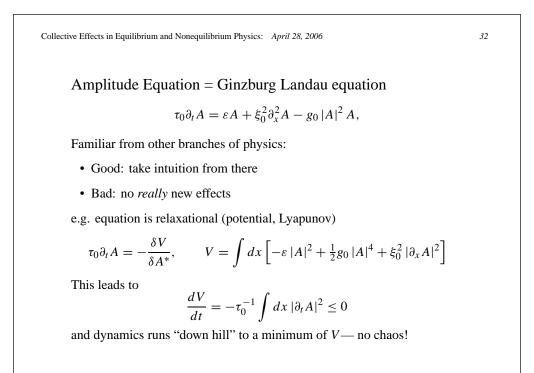
$$\tau_0 \partial_t A = \varepsilon A + \xi_0^2 \partial_x^2 A - g_0 |A|^2 A, \qquad \varepsilon = \frac{R - R_c}{R_c}$$

• Expand dynamical equation in powers of *A* and use symmetry arguments (cf., equilibrium phase transitions where we expand free energy). Equation must be invariant under:

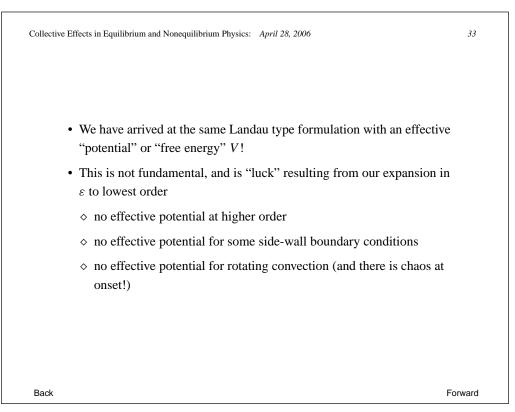
- ♦ $A(\mathbf{x}_{\perp}) \rightarrow A(\mathbf{x}_{\perp})e^{i\Delta}$ with Δ a constant, corresponding to a physical translation
- ♦ $A(\mathbf{x}_{\perp}) \rightarrow A^*(-\mathbf{x}_{\perp})$, corresponding to inversion of the horizontal coordinates (parity symmetry)
- Multiple scales perturbation theory (Newell and Whitehead, Segel 1969)
- Mode projection (MCC 1980)

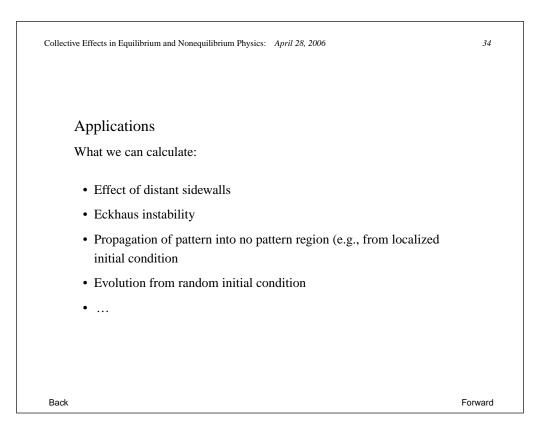
Back

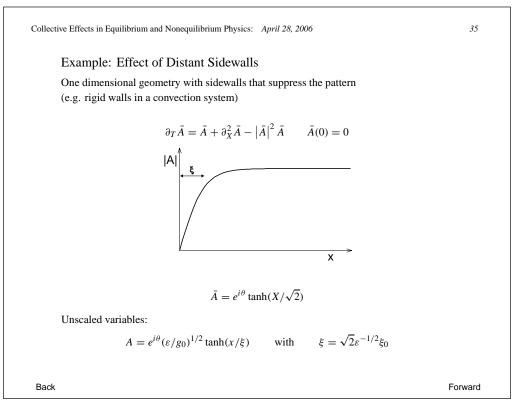
Forward

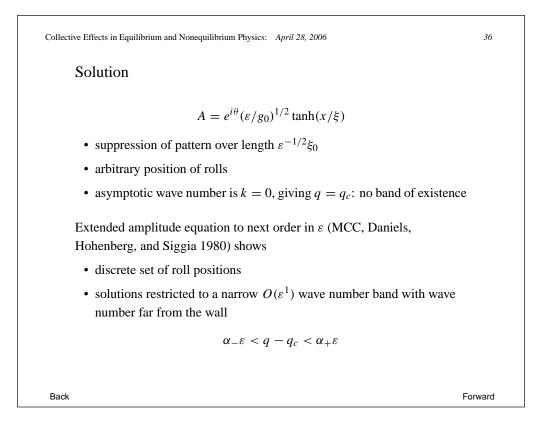


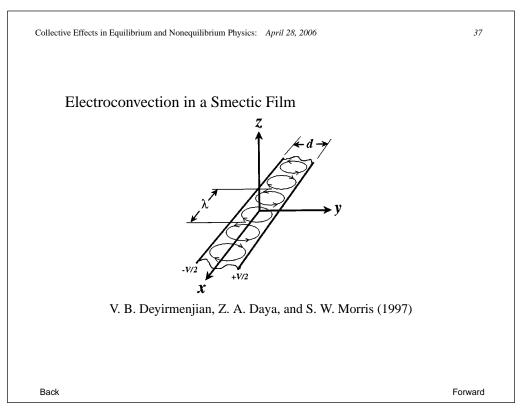
Forward

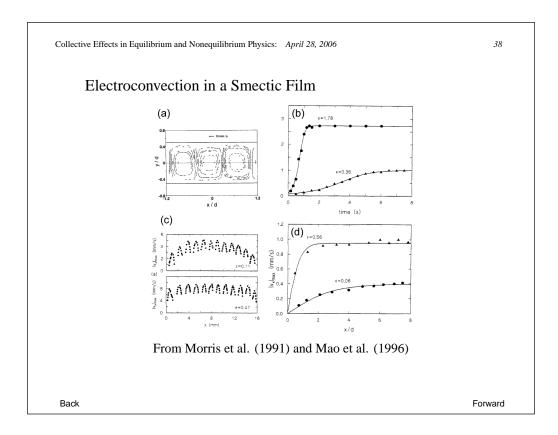


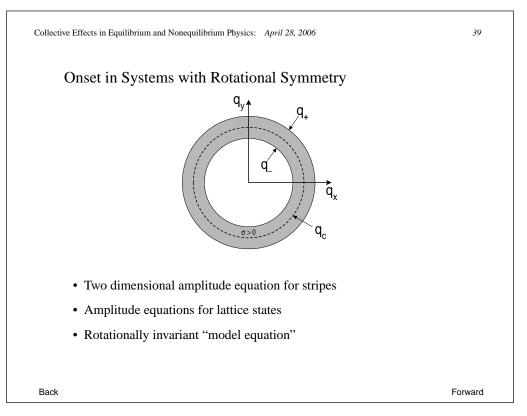


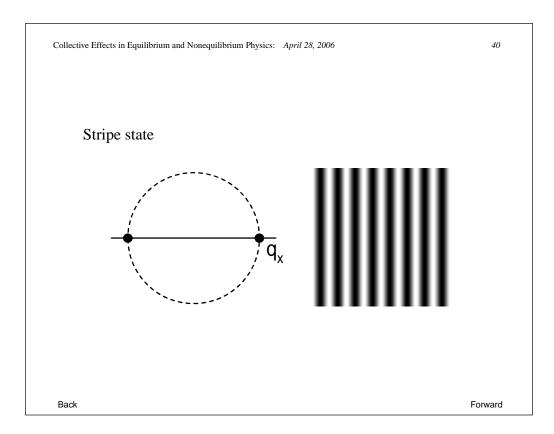


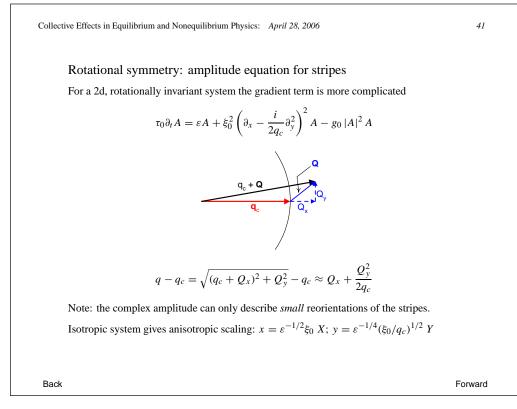


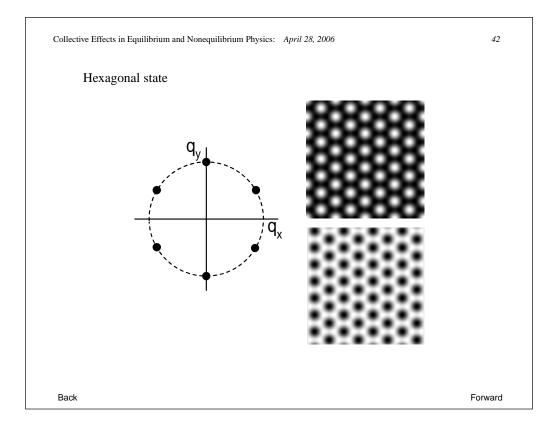


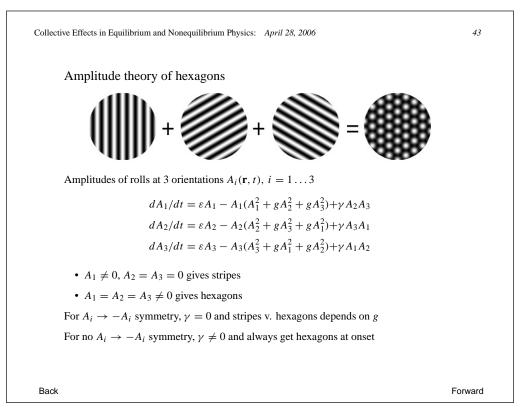


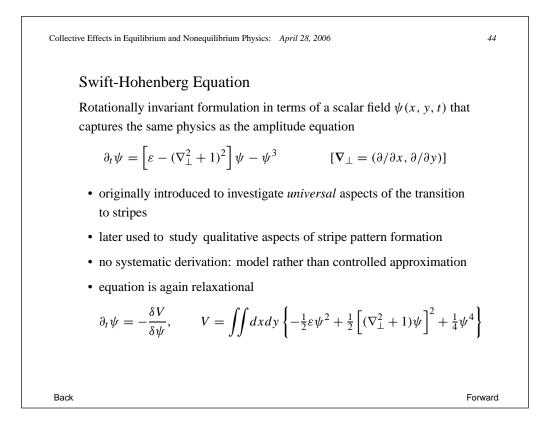












Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: April 28, 2006

Motivation

• Mode amplitude $\psi_{\mathbf{q}}(t)$ at wave vector \mathbf{q} satisfies linear equation (for $q \simeq q_c$)

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - \xi_0^2 (q - q_c)^2] \psi_{\mathbf{q}}$$

• To be able to write this as a local equation for the Fourier transform $\psi(x, y, t)$ approximate this by

$$\dot{\psi}_{\mathbf{q}} = \tau_0^{-1} [\varepsilon - (\xi_0^2/4q_c^2)(q^2 - q_c^2)^2] \psi_{\mathbf{q}}$$

• In real space this gives

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_\perp^2 + q_c^2)^2 \psi$$

Simplest linear pde that gives the ring of unstable modes (for $\varepsilon > 0$)

Add simplest possible nonlinear saturating term

$$\tau_0 \dot{\psi}(x, y, t) = \varepsilon \psi - (\xi_0^2 / 4q_c^2) (\nabla_\perp^2 + q_c^2)^2 \psi - g_0 \psi^3$$

• Alternative motivation:

$$A(x, y)e^{iq_c x} \Rightarrow \psi(x, y)$$

Back

<page-header><page-header><page-header><text>

