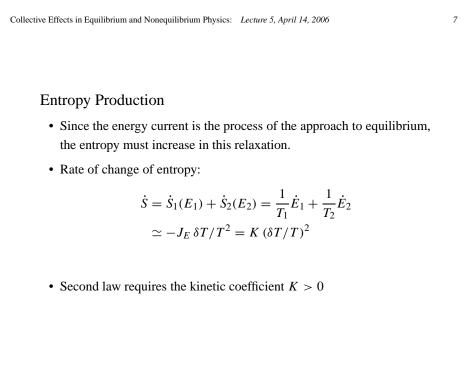


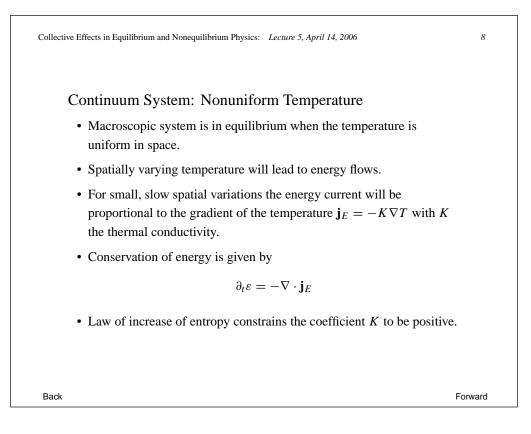
Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006	6
Slow Relaxation	
• The temperatures of the subsystems will change at a rate proportional to the rate of change of energy	Ĩ
$\dot{T}_1 = \dot{E}_1 / C_1 = -J_E / C_1$	
$\dot{T}_2 = \dot{E}_2/C_2 = J_E/C_2$	
where C_i is the thermal capacity of subsystem <i>i</i> .	
• Since the relaxation <i>between</i> the systems is slow, each system may be taken as internally in equilibrium, so that <i>C_i</i> is the <i>equilibrium</i> value of the specific heat.	
• Using $J_E = -K \delta T$ gives $\delta \dot{T} = -(K/C) \delta T$	
with	
$C^{-1} = C_1^{-1} + C_2^{-1}$	
• This equation yields <i>exponential</i> relaxation with a time constant	
au = C/K	
given by macroscopic quantities.	
Back	Forward



Back

Forward

4



Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006

Relaxation Mode

- Take $\delta \varepsilon = C \delta T$ with C the specific heat per unit volume.
- For small temperature perturbations *C* and *K* may be taken as constants.
- The two equations can be combined into the single *diffusion* equation

$$\partial_t T = \kappa \nabla^2 T$$

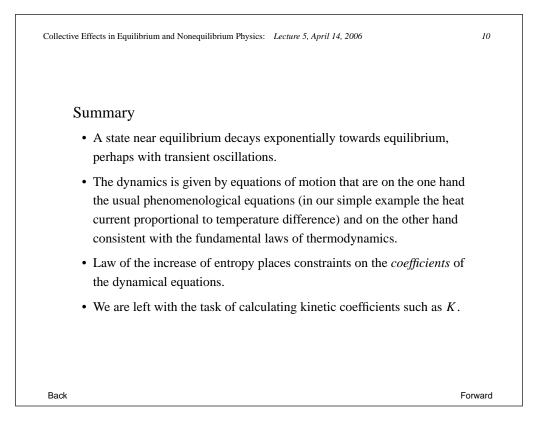
~

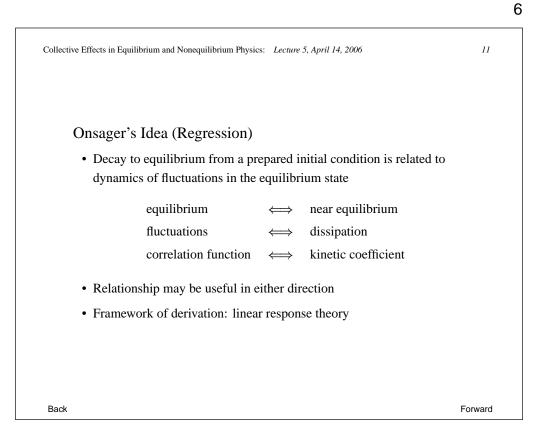
with diffusion constant $\kappa = K/C$.

- The results may be extended to the general case of coupled equations for more than one conserved quantity. Sometimes the coupling gives a wave equation rather than diffusion.
- Dynamical equations are linear, and the time evolution will be the sum of exponentially oscillating/decaying modes.

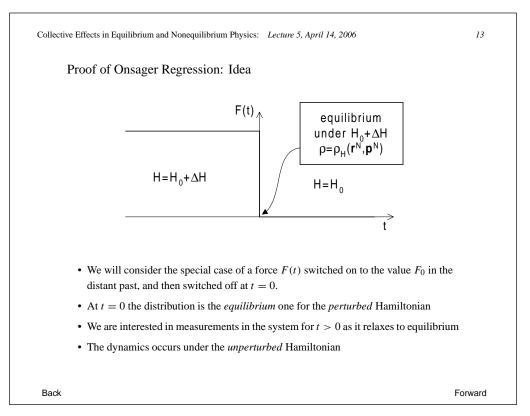
Back

Forward





Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006	12
Linear Response Theory	
• Calculate the change in a measurement $\langle B(t) \rangle$ due to the application of a small "field" $F(t)$ giving a perturbation to the Hamiltonian $\Delta H = -F(t)A$.	l
• Both <i>A</i> and <i>B</i> are determined by the phase space coordinates $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$. Fo example, an electric field $\mathbf{E} = -(1/c)d\mathbf{A}/dt$ gives the perturbation	r
$\Delta H = (e/mc)\mathbf{A}(t) \cdot \sum_{N} \mathbf{p}^{N}(t).$	
• Time dependence is given by the evolution of $\mathbf{r}^{N}(t)$, $\mathbf{p}^{N}(t)$ according to Hamil equations.	lton's
 We can calculate averages in terms of an ensemble of systems given by a know distribution ρ(r^N, p^N) at t = 0. The expectation value at a later time is then 	'n
$\langle B(t) \rangle = \int d\mathbf{r}^N d\mathbf{p}^N \rho(\mathbf{r}^N, \mathbf{p}^N) B[\mathbf{r}^N(t) \leftarrow \mathbf{r}^N, \mathbf{p}^N(t) \leftarrow \mathbf{p}^N]$	
• Could alternatively follow the time evolution of ρ through Liouville's equation	1
$\langle B(t) \rangle = \int d\mathbf{r}^N d\mathbf{p}^N \rho(\mathbf{r}^N, \mathbf{p}^N, t) B(\mathbf{r}^N, \mathbf{p}^N)$	
Back	Forward
Daun	Forward



Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006

Onsager Regression: Details (cont.)

• Expand the exponentials $e^{-\beta(H_0+\Delta H)} \simeq e^{-\beta H_0}(1-\beta\Delta H)$ so

$$\langle B(t) \rangle = \langle B \rangle_0 - \beta [\langle \Delta H B(t) \rangle_0 - \langle B \rangle_0 \langle \Delta H \rangle_0] + O(\Delta H)^2$$

- ♦ Here $\langle \rangle_0$ denotes the ensemble average for a system with no perturbation, i.e., the distribution $\rho_0 = e^{-\beta H_0}/\text{Tr}e^{-\beta H_0}$.
- ♦ In the unperturbed system the Hamiltonian is H_0 for all time, and averages such as $\langle B(t) \rangle_0$ are time independent $\Rightarrow \langle B \rangle_0$.
- Writing $A(\mathbf{r}^N, \mathbf{p}^N) = A(0), \, \delta A(t) = A(t) \langle A \rangle_0$ and use $\Delta H = -F_0 A(0)$, gives for the change in the measured quantity

$$\Delta \langle B(t) \rangle = \beta F_0 \langle \delta A(0) \delta B(t) \rangle_0$$

• This result proves the Onsager regression hypothesis.

Back

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006	16
Kubo Formula	
• For a general $F(t)$ we write the linear response as	
$\Delta \langle B(t) \rangle = \int_{-\infty}^{\infty} \chi_{AB}(t,t') F(t') dt'$	
with χ_{AB} the susceptibility or response function with the properties	
$\chi_{AB}(t, t') = \chi_{AB}(t - t') $ stationarity of unperturbed system $\chi_{AB}(t - t') = 0 \text{ for } t < t' $ causality $\tilde{\chi}_{AB}(-f) = \tilde{\chi}_{AB}^{*}(f) $ $\chi_{AB}(t, t') \text{ real}$	
• For the step function force turned off at $t = 0$	
$\Delta \langle B(t) \rangle = F_0 \int_{-\infty}^0 \chi_{AB}(t-t') dt' = F_0 \int_t^\infty \chi_{AB}(\tau) d\tau$	
• Differentiating $\Delta \langle B(t) \rangle = \beta F_0 \langle \delta A(0) \delta B(t) \rangle_0$ then gives the classical Kubo expression $\chi_{AB}(t) = \begin{cases} -\beta \frac{d}{dt} \langle \delta A(0) \delta B(t) \rangle_0 & t \ge 0 \\ 0 & t < 0 \end{cases}$	
Back	Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006

Energy Absorption

• Rate of doing work on the system is "force \times velocity" $W = F\dot{A}$

$$W = F(t)\frac{d}{dt}\int_{-\infty}^{\infty}\chi(t,t')F(t')dt'$$

writing simply χ for χ_{AA} .

• For a sinusoidal force $F(t) = \frac{1}{2}(F_f e^{2\pi i f t} + c.c.)$ the integral gives the Fourier transform $\tilde{\chi}$ of χ so that the average rate of working is

$$W(f) = \frac{1}{4} 2\pi i f |F_f|^2 [\tilde{\chi}(f) - \tilde{\chi}(-f)]$$

= $\pi f |F_f|^2 (-\tilde{\chi}''(f))$

where $\tilde{\chi}''$ is Im $\tilde{\chi}$ and terms varying as $e^{\pm 4\pi i f t}$ average to zero.

- The imaginary part of $\tilde{\chi}$ tells us about the energy absorption or dissipation.

Back

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006	18
Fluctuation-Dissipation	
• Use the fluctuation expression for $\chi = \chi_{AA}$	
$\tilde{\chi}''(f) = \int_{-\infty}^{\infty} \chi(t) \sin(2\pi ft) dt$ (definition of Fourier transform)	
$= -\beta \int_0^\infty \frac{d}{dt} \langle \delta A(0) \delta A(t) \rangle_0 \sin(2\pi f t) dt \qquad \text{(fluctuation expression)}$	
$= \beta(2\pi f) \int_0^\infty \langle \delta A(0) \delta A(t) \rangle_0 \cos(2\pi f t) dt \qquad \text{(integrate by par}$	ts)
• The integral is the spectral density of <i>A</i> fluctuations, so that (including necessary factors)	
$G_A(f) = 4k_BT \frac{(-\tilde{\chi}''(f))}{2\pi f}$	
This relates the spectral density of fluctuations to the susceptibility	
component giving energy absorption.	

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006

Langevin Force

• Suppose the fluctuations in A derive from a fluctuating (Langevin) force F'

$$\delta A(t) = \int_{-\infty}^{\infty} \chi(t, t') F'(t') dt$$

• Since the Fourier transform of a convolution is just the product of the Fourier transforms the spectral density of *A* is

 $G_A(f) = |\tilde{\chi}(f)|^2 G_F(f)$

• Using the expression $G_A(f) = 4k_BT(-\tilde{\chi}''(f))/2\pi f$ leads to

$$G_F(f) = 4k_BT \frac{1}{2\pi f} \operatorname{Im}\left[\frac{1}{\tilde{\chi}(f)}\right]$$

• Instead of the susceptibility introduce the *impedance* $Z = F/\dot{A}$ so that

$$\tilde{Z}(f) = \frac{1}{2\pi i f} \frac{1}{\tilde{\chi}(f)}$$

• Defining the "resistance" $\tilde{R}(f) = \operatorname{Re} \tilde{Z}(f)$ gives

$$G_F(f) = 4k_B T \tilde{R}(f)$$

Back

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006
Quantum Result

The derivations have been classical
In a quantum treatment A and B, as well as H are operators that may not commute

The change to the fluctuation-dissipation is to make the replacement k_BT → hf/2 coth(hf/2k_BT) so that G_F(f) = 2hf coth(hf/2k_BT) Ñ(f)
Quantum approach was pioneered by Kubo, and the set of ideas is often called the Kubo formalism.

