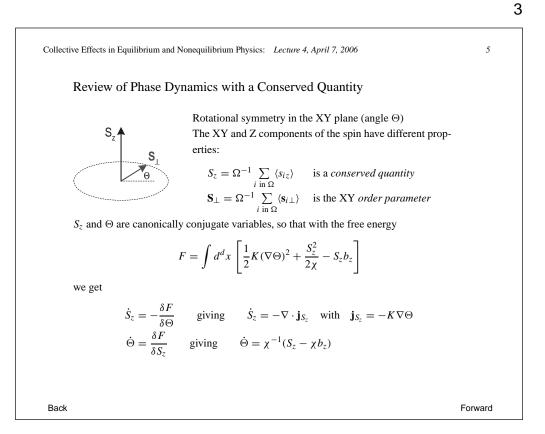
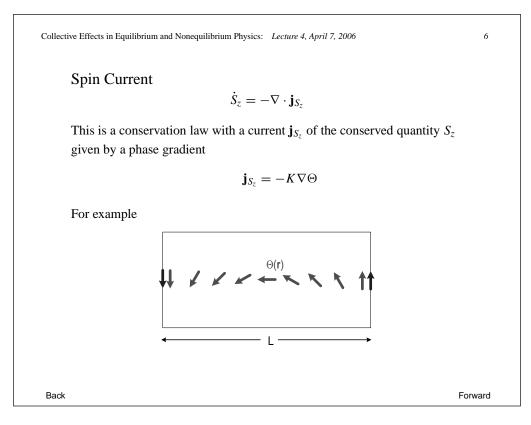


Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006	4
History of Superfluidity and Superconductivity	
1908 Liquefaction of ⁴ He by Kamerlingh Onnes	
1911 Discovery of superconductivity by Onnes (resistance drops to zero)	
1933 Meissner effect: superconductors expel magnetic field	
1937 Discovery of superfluidity in ⁴ He by Allen and Misener	
1938 Connection of superfluidity with Bose-Einstein condensation by London	
1955 Feynman's theory of quantized vortices	
1956 Onsager and Penrose identify the broken symmetry in superfluidity ODLRO)
1957 BCS theory of superconductivity	
1962 Josephson effect	
1973 Discovery of superfluidity in ³ He at 2mK by Osheroff, Lee, and Richardson	
1986 Discovery of high- T_c superconductors by Bednorz and Müller	
1995- Study of superfluidity in ultracold trapped dilute gases	
Back	Forward





Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Phase Dynamics

$$\dot{\Theta} = \chi^{-1} (S_z - \chi b_z)$$

- No dynamics in full thermodynamic equilibrium: $S_z = \chi b_{0z}$
- Add an additional external field $b_{1z} = \gamma B_{1z}$

$$\dot{\Theta} = -b_{1z} = -\gamma B_{1z}$$

the usual precession of a magnetic moment in an applied field (Larmor precession).

- Note that this is an equilibrium state: S_z ≠ χ(b_{0z} + b_{1z}) but is a conserved quantity— no approximations
- For formal proof see Halperin and Saslow, Phys. Rev. B 16, 2154 (1977), Appendix: "the Larmor precession theorem"

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 8 Hydrodynamic Approach Hydrodynamics: a formal derivation of long wavelength dynamics of conserved quantities and broken symmetry variables in a thermodynamic approach Starting points · generalized rigidity: extra contribution to the energy density from gradients of the broken symmetry variable $\varepsilon = \frac{1}{2} K (\nabla \Theta)^2$ · thermodynamic identity $d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$ with $\Phi = K \nabla \Theta$ · equilibrium phase dynamics (Larmor precession theorem) $\dot{\Theta} = \mu_z$ Derive · dynamical equations for conserved quantities and broken symmetry variables for slowly varying disturbances Back Forward

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Rigidity and the Thermodynamic Identity

In terms of the energy density

$$d\varepsilon = Tds + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• conjugate fields are

$$\mu_z = \left(\frac{\partial \varepsilon}{\partial s_z}\right)_{s,\nabla\Theta} \quad \text{and} \quad \Phi = \left(\frac{\partial \varepsilon}{\partial \nabla\Theta}\right)_{s,\mathbf{s}}$$

Or with the free energy density $f = \varepsilon - Ts$

$$df = -sdT + \mu_z ds_z + \Phi \cdot d(\nabla \Theta)$$

• conjugate fields are

$$\mu_z = \left(\frac{\partial f}{\partial s_z}\right)_{T,\nabla\Theta} \quad \text{and} \quad \Phi = \left(\frac{\partial f}{\partial\nabla\Theta}\right)_{T,\mathbf{s}_z}$$

These give

$$\mu_z = \chi^{-1}(S_z - \chi b_z)$$
 and $\Phi = K \nabla \Theta$

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 Entropy Production $Tds = d\varepsilon - \mu_z ds_z - \Phi \cdot d(\nabla \Theta)$ • Form time derivative of entropy density $\frac{ds}{dt} = \frac{1}{T} \frac{d\varepsilon}{dt} - \frac{\mu_z}{T} \frac{ds_z}{dt} - \frac{\Phi}{T} \cdot \frac{d(\nabla \Theta)}{dt}$ • Conservation laws and dynamics of broken symmetry variable $(\mathbf{j}^\varepsilon, \mathbf{j}^{s_z} \text{ unknown})$ $\frac{ds}{dt} = -\frac{1}{T} \nabla \cdot \mathbf{j}^\varepsilon + \frac{\mu_z}{T} \nabla \cdot \mathbf{j}^{s_z} - \frac{\Phi}{T} \cdot \nabla \mu_z$ • Entropy production equation $\frac{ds}{dt} = -\nabla \cdot \mathbf{j}^s + R \quad \text{with} \quad R \ge 0$ • Identify the entropy current and production $\mathbf{j}^s = T^{-1} (\mathbf{j}^\varepsilon - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Equilibrium Dynamics

Entropy Production

$$RT = -T^{-1}(\mathbf{j}^{\varepsilon} - \mu_z \mathbf{j}^{s_z}) \cdot \nabla T - (\mathbf{j}^{s_z} + \Phi) \cdot \nabla \mu_z$$

(strategy: *R* should be a function of gradients of the conjugate variables) In the absence of dissipation the rate of entropy production must be zero.

• Spin current

$$\mathbf{j}^{s_z} = -\Phi = -K\nabla\Theta$$

· Energy current

$$\mathbf{j}^{\varepsilon} = \mu_z \mathbf{j}^{s_z} = -\mu_z K \nabla \Theta$$

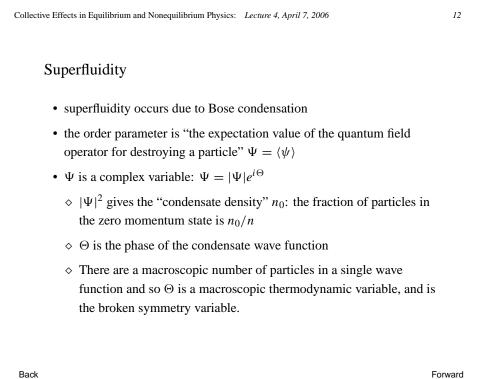
· Entropy current

 $\mathbf{i}^s = 0$

We will consider adding dissipation later.

Back

Forward



11

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 13 Broken Phase (Gauge) Symmetry • Any phase gives an equivalent state; the ordered state is characterized by a particular phase • There is an energy cost for gradients of the phase $E = \frac{1}{2} n_s \frac{\hbar^2}{m} \int (\nabla \Theta)^2 d^d x$ ♦ Stiffness constant *K* is written as $n_s(\hbar^2/m)$ and n_s is called the superfluid density ♦ Stiffness constant *not* the same as the condensate density $n_s \neq n_0$ • Conjugate variable to the phase Θ is the number of particles N • Currents and dynamics of the phase are coupled to the density, i.e., mass or electric currents · Currents are present in equilibrium, and so are supercurrents Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 **Supercurrents by Analogy** • One-to-one correspondence at the quantum operator level $\hbar N \equiv S_z$ and $\Theta_{\text{phase}} \equiv -\Theta_{\text{spin}}$ (e.g., $\uparrow \equiv \text{particle}$, $\downarrow \equiv \text{no particle}$) • Gradient of the phase gives a flow of particles $\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{j}$ with $\mathbf{j} = n_s(\hbar/m)\nabla\Theta$ • Often associate a flow with a velocity: introduce superfluid velocity $\mathbf{v}_s = (\hbar/m)\nabla\Theta$ and then $\mathbf{j} = n_s \mathbf{v}_s$ • Or write in terms of flow of mass $\frac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{g}$ with $\mathbf{g} = \rho_s \mathbf{v}_s$, $\rho_s = mn_s$

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Hydrodynamic Derivation

• Free energy expression: generalized rigidity and energy in external potential V

$$f = \frac{\hbar^2 n_s}{2m} (\nabla \Theta)^2 + \frac{1}{2} K n^2 + V n$$

(*K* is bulk modulus)

• Equilibrium phase dynamics (Larmor precession theorem) from dynamics with added constant potential δV :

$$\Psi(V,t) = \Psi(0,t)e^{-i\hbar N\delta V}$$

gives

$$\hbar \dot{\Theta} = -\delta V$$
 or in general $\hbar \dot{\Theta} = -\left(\frac{\partial f}{\partial n}\right)_T = -\mu$

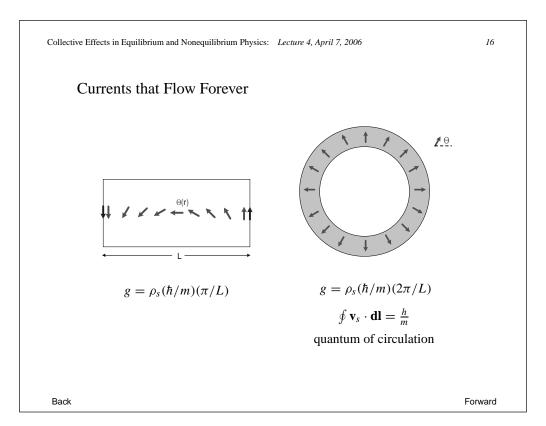
· Entropy production argument from the thermodynamic identity

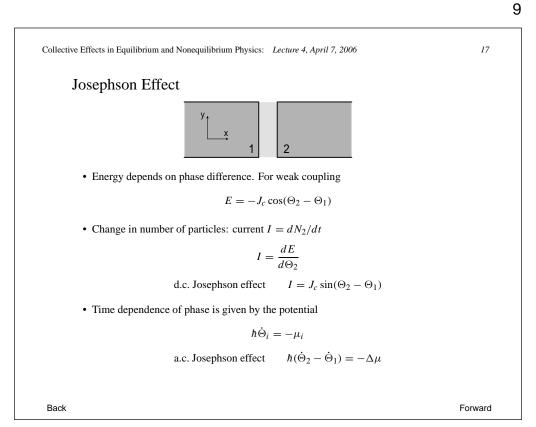
$$d\varepsilon = Tds + \mu dn + \Phi \cdot d(\nabla \Theta)$$
 with $\Phi = (\hbar^2 n_s/m)\nabla \Theta$

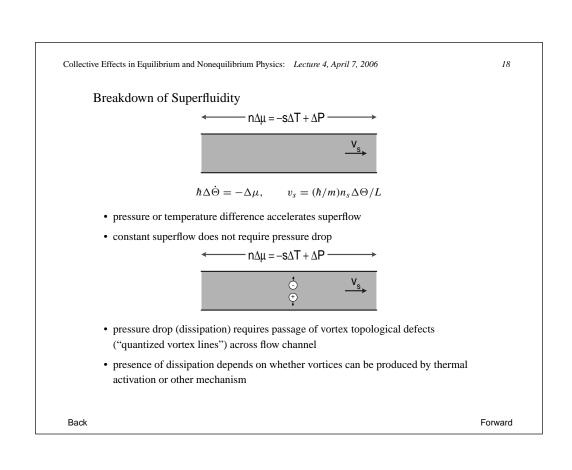
gives the current of particles

$$\dot{n} = -\nabla \cdot \mathbf{j}$$
 with $\mathbf{j} = n_s(\hbar/m)\nabla\Theta$

Back







Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Josephson Effect for a Superconductor

- Θ is phase of *pair* wave function
- expressions must be gauge invariant in presence of vector potential

For bulk material

Supercurrent:
$$\mathbf{j} = n_s \frac{\hbar}{2m} \left(\nabla \Theta(\mathbf{x}) + \frac{2e}{\hbar c} \mathbf{A} \right)$$

Josephson equation: $\hbar \dot{\Theta} = 2eV$

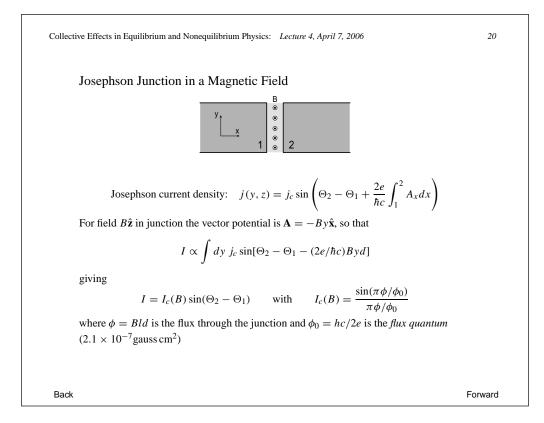
For Josephson junction, current is $I = \int j(y, z) dy dz$ with

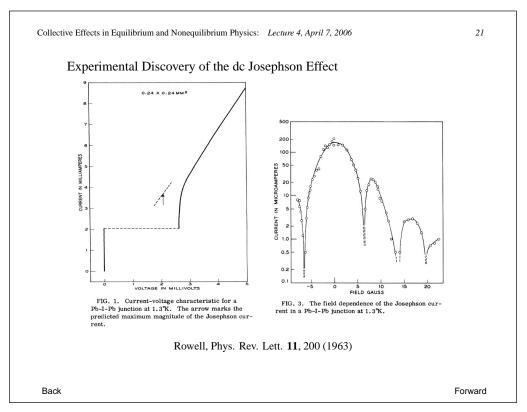
$$j(y,z) = j_c \sin\left(\Theta_2 - \Theta_1 + \frac{2e}{\hbar c} \int_1^2 A_x dx\right)$$

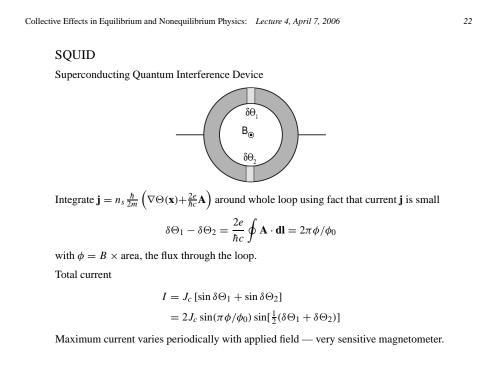
and

$$V = (\hbar/2e)(\dot{\Theta}_2 - \dot{\Theta}_1)$$

Back







Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Four Sounds in a Superfluid

Equations of motion for conserved quantities

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$
$$\dot{\mathbf{g}} = -\nabla P$$
$$\dot{s} = 0$$

and the dynamics of the broken symmetry variable

$$\hbar \dot{\Theta} = -\mu$$

which can be written as

$$\rho \dot{\mathbf{v}}_s = s \nabla T - \nabla P$$

Need to connect the momentum density to the superfluid velocity.

Back

Forward

24

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 Galilean Invariance Transform to frame with a velocity $-\mathbf{v}_n$: · Momentum density $\mathbf{g} = \rho_s \mathbf{v}_s^{(0)} + \rho \mathbf{v}_n$ Define the "normal fluid density" $\rho_n = \rho - \rho_s$ and write the transformed superfluid velocity $\mathbf{v}_s = \mathbf{v}_s^{(0)} + \mathbf{v}_n$ $\mathbf{g} = \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n$ · Entropy current $\mathbf{j}^s = s\mathbf{v}_n$ • Momentum equation can be transformed to $\rho_s \dot{\mathbf{v}}_s + \rho_n \dot{\mathbf{v}}_n = -\nabla P$ and using the equation for $\dot{\mathbf{v}}_s$ in the form $(\rho_s + \rho_n) \dot{\mathbf{v}}_s = s \nabla T - \nabla P$ gives $\rho_n(\dot{\mathbf{v}}_s - \dot{\mathbf{v}}_n) = s \nabla T$ Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

First Sound

Usual coupled density and momentum equations

 $\dot{\rho} = -\nabla \cdot \mathbf{g}$ $\dot{\mathbf{g}} = -\nabla P$

and the pressure-density relationship (K is the bulk modulus)

$$\delta P = K \, \delta \rho / \rho$$

These give first sound waves $\propto e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$ propagating with the usual sound speed $\omega = c_1 q$ with

$$c_1 = \sqrt{\frac{K}{\rho}}$$

Back

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006	26
Second Sound	
Coupled counterflow and entropy wave. Use $c_2 \ll c_1 \Rightarrow$ density constant, $\mathbf{g} = 0$	
$ \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0 \qquad \Rightarrow \qquad \mathbf{v}_s - \mathbf{v}_n = -(\rho/\rho_s) \mathbf{v}_n $	
(remember $\rho_s + \rho_n = \rho$).	
Entropy equation: $\dot{s} = -s \nabla \cdot \mathbf{v}_n$	
Entropy-temperature relationship (C is the specific heat): $\delta s = C \delta T / T$	
$C\dot{T} = sT(\rho_s/\rho)\nabla\cdot(\mathbf{v}_s-\mathbf{v}_n)$	
Counterflow equation	
$\rho_n(\dot{\mathbf{v}}_s - \dot{\mathbf{v}}_n) = s \nabla T$	
These give propagating second sound waves with the speed	
$c_2 = \sqrt{\frac{\rho_s \ s^2 T}{\rho_n \ \rho C}}$	

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006

Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean invariance (no \mathbf{v}_n), temperature constant

$$\dot{\rho} = -\nabla \cdot \mathbf{g}$$
$$\mathbf{g} = \rho_s \mathbf{v}_s$$
$$\rho \dot{\mathbf{v}}_s = -\nabla P$$
$$\delta P = -K \delta \rho / \rho$$

These gives a fourth sound wave propagating with the speed

$$c_4 = \sqrt{\frac{\rho_s}{\rho} \frac{K}{\rho}}$$

Back

