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Today’s Lecture

Superfluids and superconductors

• What are superfluidity and superconductivity?

• Review of phase dynamics

• Description in terms of a macroscopic phase

• Supercurrents that flow for ever

• Josephson effect

• Four sounds
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The Amazing World of Superfluidity and Superconductivity

• Electric currents in loops that flow

for ever (measured for∼ decade)

• Beakers of fluid that empty them-

selves

• Fluids that flow without resistance

through tiny holes

• Flow in surface films less than an

atomic layer thick

• Flow driven by temperature differ-

ences (fountain effect)
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History of Superfluidity and Superconductivity

1908 Liquefaction of4He by Kamerlingh Onnes

1911 Discovery of superconductivity by Onnes (resistance drops to zero)

1933 Meissner effect: superconductors expel magnetic field

1937 Discovery of superfluidity in4He by Allen and Misener

1938 Connection of superfluidity with Bose-Einstein condensation by London

1955 Feynman’s theory of quantized vortices

1956 Onsager and Penrose identify the broken symmetry in superfluidity ODLRO

1957 BCS theory of superconductivity

1962 Josephson effect

1973 Discovery of superfluidity in3He at 2mK by Osheroff, Lee, and Richardson

1986 Discovery of high-Tc superconductors by Bednorz and Müller

1995- Study of superfluidity in ultracold trapped dilute gases
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Review of Phase Dynamics with a Conserved Quantity

Sz

S⊥⊥⊥⊥

Θ

Rotational symmetry in the XY plane (angle2)

The XY and Z components of the spin have different prop-

erties:

Sz = �−1 ∑
i in �

〈siz〉 is aconserved quantity

S⊥ = �−1 ∑
i in �

〈si ⊥〉 is the XYorder parameter

Sz and2 are canonically conjugate variables, so that with the free energy

F =
∫

ddx

[
1

2
K (∇2)2 + S2

z

2χ
− Szbz

]

we get

Ṡz = − δF

δ2
giving Ṡz = −∇ · j Sz with j Sz = −K∇2

2̇ = δF

δSz
giving 2̇ = χ−1(Sz − χbz)
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Spin Current
Ṡz = −∇ · j Sz

This is a conservation law with a currentj Sz of the conserved quantitySz

given by a phase gradient

j Sz = −K∇2

For example

Θ(r)

L
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Phase Dynamics

2̇ = χ−1(Sz − χbz)

• No dynamics in full thermodynamic equilibrium:Sz = χb0z

• Add an additional external fieldb1z = γ B1z

2̇ = −b1z = −γ B1z

the usual precession of a magnetic moment in an applied field (Larmor

precession).

• Note that this is an equilibrium state:Sz 6= χ(b0z + b1z) but is a

conserved quantity— no approximations

• For formal proof see Halperin and Saslow,

Phys. Rev. B 16, 2154 (1977), Appendix:“the Larmor precession

theorem”
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Hydrodynamic Approach
Hydrodynamics: a formal derivation of long wavelength dynamics of conserved
quantities and broken symmetry variables in a thermodynamic approach

Starting points

• generalized rigidity: extra contribution to the energy density from gradients of the
broken symmetry variable

ε = 1

2
K (∇2)2

• thermodynamic identity

dε = T ds+ µzdsz +8 · d(∇2) with 8 = K∇2

• equilibrium phase dynamics (Larmor precession theorem)

2̇ = µz

Derive

• dynamical equations for conserved quantities and broken symmetry variables for
slowly varying disturbances
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Rigidity and the Thermodynamic Identity

In terms of the energy density

dε = T ds+ µzdsz +8 · d(∇2)

• conjugate fieldsare

µz =
(
∂ε

∂sz

)
s,∇2

and 8 =
(
∂ε

∂∇2
)

s,sz

Or with the free energy densityf = ε − T s

d f = −sdT+ µzdsz +8 · d(∇2)

• conjugate fieldsare

µz =
(
∂ f

∂sz

)
T,∇2

and 8 =
(
∂ f

∂∇2
)

T,sz

These give

µz = χ−1(Sz − χbz) and 8 = K∇2
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Entropy Production

T ds= dε − µzdsz −8 · d(∇2)

• Form time derivative of entropy density

ds

dt
= 1

T

dε

dt
− µz

T

dsz

dt
− 8

T
· d(∇2)

dt

• Conservation laws and dynamics of broken symmetry variable (j ε, jsz unknown)

ds

dt
= − 1

T
∇ · j ε + µz

T
∇ · jsz − 8

T
·∇µz

• Entropy production equation

ds

dt
= −∇ · js + R with R ≥ 0

• Identify the entropy current and production

js = T−1(j ε − µzjsz)

RT = −T−1(j ε − µzjsz) · ∇T − (jsz +8)·∇µz
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Equilibrium Dynamics

Entropy Production

RT = −T−1(j ε − µzjsz) · ∇T − (jsz +8) · ∇µz

(strategy:R should be a function of gradients of the conjugate variables)

In the absence of dissipation the rate of entropy production must be zero.

• Spin current

jsz = −8 = −K∇2
• Energy current

j ε = µzjsz = −µzK∇2
• Entropy current

js = 0

We will consider adding dissipation later.
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Superfluidity

• superfluidity occurs due to Bose condensation

• the order parameter is “the expectation value of the quantum field

operator for destroying a particle”9 = 〈ψ〉
• 9 is a complex variable:9 = |9|ei2

� |9|2 gives the “condensate density”n0: the fraction of particles in

the zero momentum state isn0/n

� 2 is the phase of the condensate wave function

� There are a macroscopic number of particles in a single wave

function and so2 is a macroscopic thermodynamic variable, and is

the broken symmetry variable.
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Broken Phase (Gauge) Symmetry

• Any phase gives an equivalent state; the ordered state is characterized
by a particular phase

• There is an energy cost for gradients of the phase

E = 1

2
ns

h̄2

m

∫
(∇2)2 ddx

� Stiffness constantK is written asns(h̄2/m) andns is called the
superfluid density

� Stiffness constantnot the same as the condensate densityns 6= n0

• Conjugate variable to the phase2 is the number of particlesN

• Currents and dynamics of the phase are coupled to the density, i.e.,
mass or electric currents

• Currents are presentin equilibrium, and so aresupercurrents
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Supercurrents by Analogy

• One-to-one correspondence at the quantum operator level

h̄N ≡ Sz and 2phase≡ −2spin

(e.g.,↑≡ particle,↓≡ no particle)

• Gradient of the phase gives a flow of particles

∂n

∂t
= −∇ · j with j = ns(h̄/m)∇2

• Often associate a flow with a velocity: introduce superfluid velocity

vs = (h̄/m)∇2 and thenj = nsvs

• Or write in terms of flow of mass

∂ρ

∂t
= −∇ · g with g = ρsvs, ρs = mns
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Hydrodynamic Derivation
• Free energy expression: generalized rigidity and energy in external potentialV

f = h̄2ns

2m
(∇2)2 + 1

2
Kn2 + V n

(K is bulk modulus)

• Equilibrium phase dynamics (Larmor precession theorem) from dynamics with
added constant potentialδV :

9(V, t) = 9(0, t)e−i h̄NδV t

gives

h̄2̇ = −δV or in general h̄2̇ = −
(
∂ f

∂n

)
T

= −µ

• Entropy production argument from the thermodynamic identity

dε = T ds+ µdn +8 · d(∇2) with 8 = (h̄2ns/m)∇2
gives the current of particles

ṅ = −∇ · j with j = ns(h̄/m)∇2
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Currents that Flow Forever

Θ(r)

L

g = ρs(h̄/m)(π/L)

Θ

g = ρs(h̄/m)(2π/L)∮
vs · dl = h

m

quantum of circulation

8
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Josephson Effect

x

y

1 2

• Energy depends on phase difference. For weak coupling

E = −Jc cos(22 −21)

• Change in number of particles: currentI = d N2/dt

I = d E

d22

d.c. Josephson effect I = Jc sin(22 −21)

• Time dependence of phase is given by the potential

h̄2̇i = −µi

a.c. Josephson effect h̄(2̇2 − 2̇1) = −1µ
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Breakdown of Superfluidity

n∆µ = −s∆T + ∆P

vs

h̄12̇ = −1µ, vs = (h̄/m)ns12/L

• pressure or temperature difference accelerates superflow

• constant superflow does not require pressure drop

n∆µ = −s∆T + ∆P

vs
ÿ

�

• pressure drop (dissipation) requires passage of vortex topological defects
(“quantized vortex lines”) across flow channel

• presence of dissipation depends on whether vortices can be produced by thermal

activation or other mechanism

9
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Josephson Effect for a Superconductor

• 2 is phase ofpair wave function

• expressions must begauge invariantin presence of vector potential

For bulk material

Supercurrent: j = ns
h̄

2m

(
∇2(x)+2e

h̄c
A
)

Josephson equation:h̄2̇ = 2eV

For Josephson junction, current isI = ∫
j (y, z) dy dzwith

j (y, z) = jc sin

(
22 −21 + 2e

h̄c

∫ 2

1
Axdx

)

and

V = (h̄/2e)(2̇2 − 2̇1)
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Josephson Junction in a Magnetic Field
B

x

y

1 2

Josephson current density:j (y, z) = jc sin

(
22 −21 + 2e

h̄c

∫ 2

1
Axdx

)

For field Bẑ in junction the vector potential isA = −Byx̂, so that

I ∝
∫

dy jc sin[22 −21 − (2e/h̄c)Byd]

giving

I = Ic(B) sin(22 −21) with Ic(B) = sin(πφ/φ0)

πφ/φ0

whereφ = Bld is the flux through the junction andφ0 = hc/2e is theflux quantum

(2.1 × 10−7gauss cm2)
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Experimental Discovery of the dc Josephson Effect

Rowell, Phys. Rev. Lett.11, 200 (1963)
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SQUID

Superconducting Quantum Interference Device

δΘ1

δΘ2

B

Integratej = ns
h̄

2m

(
∇2(x)+2e

h̄cA
)

around whole loop using fact that currentj is small

δ21 − δ22 = 2e

h̄c

∮
A · dl = 2πφ/φ0

with φ = B × area, the flux through the loop.

Total current

I = Jc [sinδ21 + sinδ22]

= 2Jc sin(πφ/φ0) sin[1
2(δ21 + δ22)]

Maximum current varies periodically with applied field — very sensitive magnetometer.
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Four Sounds in a Superfluid

Equations of motion for conserved quantities

ρ̇ = −∇ · g

ġ = −∇ P

ṡ = 0

and the dynamics of the broken symmetry variable

h̄2̇ = −µ
which can be written as

ρv̇s = s∇T − ∇ P

Need to connect the momentum density to the superfluid velocity.
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Galilean InvarianceTransform to frame with a velocity−vn:

• Momentum density

g = ρsvs
(0) + ρvn

Define the “normal fluid density”ρn = ρ − ρs and write the transformed superfluid

velocityvs = v(0)s + vn

g = ρsvs + ρnvn

• Entropy current

js = svn

• Momentum equation can be transformed to

ρsv̇s + ρnv̇n = −∇ P

and using the equation forv̇s in the form

(ρs + ρn)v̇s = s∇T − ∇ P

gives

ρn(v̇s − v̇n) = s∇T
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First Sound

Usual coupled density and momentum equations

ρ̇ = −∇ · g

ġ = −∇ P

and the pressure-density relationship (K is the bulk modulus)

δP = K δρ/ρ

These give first sound waves∝ ei (q·r−ωt) propagating with the usual

sound speedω = c1q with

c1 =
√

K

ρ
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Second Sound

Coupled counterflow and entropy wave. Usec2 � c1 ⇒ density constant,g = 0

ρsvs + ρnvn = 0 ⇒ vs − vn = −(ρ/ρs)vn

(rememberρs + ρn = ρ).

Entropy equation: ṡ = −s∇ · vn

Entropy-temperature relationship (C is the specific heat):δs = CδT/T

CṪ = sT(ρs/ρ)∇ · (vs − vn)

Counterflow equation

ρn(v̇s − v̇n) = s∇T

These give propagating second sound waves with the speed

c2 =
√
ρs

ρn

s2T

ρC

13
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Fourth Sound

Fluid confined in porous media: no conserved momentum, no Galilean

invariance (novn), temperature constant

ρ̇ = −∇ · g

g = ρsvs

ρv̇s = −∇ P

δP = −K δρ/ρ

These gives a fourth sound wave propagating with the speed

c4 =
√
ρs

ρ

K

ρ
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Third Sound

Wave propagating in thin films down to atomic layer thickness.

Like fourth sound, but involve changes of thickness rather than density,

and effective compressibility depends on strength of interaction with

surface.
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Sounds in Helium-4

Temperature  T

Sp
ee

d 
 c

Tc

first

second

fourth

c1 =
√

K

ρ
, c2 =

√
ρs

ρn

s2T

ρC
, c4 =

√
ρs

ρ

K

ρ
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Next Lecture

Onsager theory and the fluctuation-dissipation theorem

• Derivation and discussion

• Application to nanomechanics and biodetectors
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