Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Collective Effects

in

Equilibrium and Nonequilibrium Physics

Website: http://cncs.bnu.edu.cn/mccross/Course/Caltech Mirror: http://haides.caltech.edu/BNU/

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

2

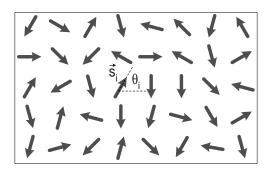
Today's Lecture

Magnets with continuous symmetry (XY model)

- Landau free energy and the Mexican hat
- Angle/phase variables
- · Goldstone's theorem
- · Generalized rigidity
- Spin wave excitations and the Mermin-Wagner theorem
- Topological defects
- Kosterlitz-Thouless transition

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

XY Model



d-dimensional lattice of *N* "spins" \mathbf{s}_i with $|\mathbf{s}_i|=1$ free to rotate in a plane Hamiltonian

$$H = -\frac{1}{2}J\sum_{\substack{i\\nn\ \delta}}\mathbf{s}_i \cdot \mathbf{s}_{i+\delta} - \mu \sum_i \mathbf{s}_i \cdot \mathbf{B}_{\perp}$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

4

Mean Field Theory

We could go through mean field theory is before.

I will leave you to show that for free XY spins with $H = -\sum_i \mathbf{s}_i \cdot \mathbf{b}$ the mean spin is given by

$$\langle \mathbf{s}_i \rangle = L_{XY}(\beta b)$$

with the function L_{XY} defined in terms of Bessel functions

$$L_{XY}(x) = \frac{I_1(x)}{I_0(x)} \simeq \frac{x}{2} - \frac{x^3}{16} + \cdots$$

and that there is a phase transition to an ordered phase, $\langle \mathbf{s}_i \rangle = \mathbf{s}$ with nonzero $|\mathbf{s}|$, below a transition temperature T_c given by $k_B T_c = dJ$.

6

Landau Free Energy

Near T_c we expand the free energy gained from a nonzero \mathbf{s} as a Taylor expansion

$$\delta f = f(\mathbf{s}, T) - f_o(T) \simeq \alpha(T)\mathbf{s} \cdot \mathbf{s} + \frac{1}{2}\beta(T)(\mathbf{s} \cdot \mathbf{s})^2 + \gamma(T)\vec{\nabla}\mathbf{s} \cdot \vec{\nabla}\mathbf{s}$$

or expanding α , β , γ around their values at T_c

$$\delta f = a(T - T_c)\mathbf{s} \cdot \mathbf{s} + \frac{1}{2}b(\mathbf{s} \cdot \mathbf{s})^2 + \gamma \vec{\nabla} \mathbf{s} \cdot \vec{\nabla} \mathbf{s}$$

Note that the gradient term is a separate dot product of the $\vec{\nabla}$ and \mathbf{s} vectors

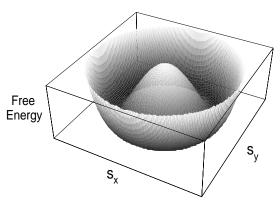
$$\vec{\nabla} \mathbf{s} \cdot \vec{\nabla} \mathbf{s} = \sum_{i,\alpha} \nabla_i s_\alpha \nabla_i s_\alpha$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

"Mexican Hat" Free Energy

$$\delta f = a(T - T_c)\mathbf{s} \cdot \mathbf{s} + \frac{1}{2}b(\mathbf{s} \cdot \mathbf{s})^2$$



Rotation of s everywhere through any angle Θ leads to an equivalent state (same free energy, etc.)

Angle remains a thermodynamic variable far below T_c

In Landau theory near T_c the complete order parameter $\mathbf{s}(\mathbf{r})$ is a thermodynamic variable because the free energy changes involving \mathbf{s} are small, and so the relaxation dynamics will be slow.

Far below T_c the magnitude $|\mathbf{s}|$ will relax quickly to the minimum of the Mexican hat, on a microscopic time scale.

The angle variable Θ will relax slowly:

- For a uniform rotation (the same change in Θ everywhere) there is no relaxation
- For a rotation Θ(r) that varies slowly in space the relaxation will be slow

The orientation of the order parameter Θ remains a new thermodynamic variable for any temperature in the ordered phase

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

8

Goldstones Theorem

For any continuous symmetry that is broken there is a low energy collective degree of freedom, with an energy that goes to zero as the wave length becomes infinite

or

For any continuous symmetry that is broken there is a low frequency collective mode, with a frequency that goes to zero as the wave number of the mode goes to zero

Developed in the context of particle physics where the "low frequency mode" becomes "zero mass boson". The search for the "Higgs Boson" coming from the supposed breaking of the electro-weak gauge symmetry is one of the great challenges in current experiments at the supercolliders.

Phase Transition with an "Angle" Symmetry

- Easy plane ferromagnets and antiferromagnets
- Superfluidity: Θ is the phase of the Bose condensed wave function
- Superconductivity: Θ is the phase of the electron pair wave function
- Nematic liquid crystals in thin films or electric field: Θ is the orientation of the long molecules in the plane

And to some degree:

- Solids: Θ is the phase of the density wave $\rho \propto e^{i(\mathbf{q}\cdot\mathbf{r}+\Theta)}$ giving the translational position of the atoms
- Smectic liquid crystal: Θ gives the translation of the planes of atoms
- Rayleigh-Bénard convection: Θ gives the translation of the convection rolls

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

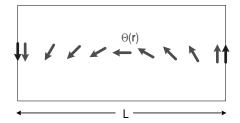
10

Generalized Rigidity

Far below T_c we are left with the free energy dependence on the order parameter angle $\Theta(\mathbf{r})$

$$\delta f = \frac{1}{2}K(\nabla\Theta)^2$$

There is a new long range rigidity or stiffness in the system:



Boundary dependent free energy scales as L^{-1} rather than $e^{-L/\xi}$ as in the absence of broken symmetry.

We may use this result to *rigorously define* the stiffness constant K.

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

This rigidity coming from broken symmetry is of course vital in the world around us:

- · Elasticity of solids: shear modulus
- · Superfluid and superconducting: superfluid density
- •

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

12

Spin-Wave Excitations

Small perturbations from a uniform state: $\Theta(\mathbf{r}) = \Theta_0 + \delta\Theta(\mathbf{r})$

Free energy of spin-wave excitations is

$$F = \frac{1}{2}K \int d^d x (\nabla \delta \Theta)^2$$

Introduce mode expansion

$$\delta\Theta(\mathbf{r}) = \sum_{\mathbf{q}} \delta\Theta_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}} \qquad (\delta\Theta_{-\mathbf{q}} = \delta\Theta_{\mathbf{q}}^*)$$

so that

$$F = \frac{1}{2}K \int d^d x \sum_{\mathbf{q}\mathbf{q}'} (\mathbf{q} \cdot \mathbf{q}') \, \delta\Theta_{\mathbf{q}} \delta\Theta_{\mathbf{q}'} e^{i\mathbf{q} \cdot \mathbf{r}} e^{i\mathbf{q}' \cdot \mathbf{r}}$$

This gives (with Ω the system "volume")

$$F = \frac{1}{2} \Omega K \sum_{\mathbf{q}} q^2 |\delta \Theta_{\mathbf{q}}|^2$$

- energy of spin wave distortion at wave vector \mathbf{q} proportional to q^2
- quadratic effective Hamiltonian: a "Gaussian model": $P(\delta\Theta_{\mathbf{q}}) \propto e^{-\beta\Omega Kq^2|\delta\Theta_{\mathbf{q}}|^2/2}$

Mermin-Wagner-Hohenberg Theorem

There is no long range order for a system with a broken continuous symmetry in two dimensions or less at any nonzero temperature.

Arises because of the divergence of the thermally excited long wavelength (Goldstone) modes.

Illustrative calculation: assume that long range order exists with order parameter s_0 , and look for corrections to this coming from the thermal excitation of the Goldstone modes.

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

14

d = 2 Illustrative Calculation

Free energy of "spin-wave" excitations is

$$F = \frac{1}{2}\Omega K \sum_{\mathbf{q}} q^2 |\delta\Theta_{\mathbf{q}}|^2$$

Equipartition theorem tell us that

$$\langle |\delta\Theta_{\mathbf{q}}|^2 \rangle = \frac{1}{\Omega} \frac{k_B T}{K q^2}$$

Now lets correct the mean spin for these fluctuations

$$\langle s \rangle = s_0 \langle \cos \Theta \rangle \simeq s_0 \left(1 - \frac{1}{2} \langle \delta \Theta^2 \rangle \right)$$

with

$$\begin{split} \langle \delta \Theta(\mathbf{r})^2 \rangle &= \left\langle \sum_{\mathbf{q}} \delta \Theta_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}} \sum_{\mathbf{q}'} \delta \Theta_{\mathbf{q}'} e^{i\mathbf{q}'\cdot\mathbf{r}} \right\rangle = \sum_{\mathbf{q}} \langle |\delta \Theta_{\mathbf{q}}|^2 \rangle \\ &= \frac{\Omega}{(2\pi)^2} \int_0^{q_c} 2\pi q dq \; \frac{1}{\Omega} \frac{k_B T}{K q^2} = \frac{k_B T}{2\pi K} \int_0^{q_c} \frac{dq}{q} \end{split}$$

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Result

$$\langle s \rangle \simeq s_0 \left(1 - \frac{1}{2} \langle \delta \Theta^2 \rangle \right)$$
 with $\langle \delta \Theta^2 \rangle = \frac{k_B T}{2\pi K} \int_0^{q_c} \frac{dq}{q}$

- Integral diverges because of the denominator as $q \to 0$!
- Divergence occurs for $d \le 2$ and is logarithmic for d = 2.

No long range order for $d \le 2$

For rigorous proofs see

- Mermin and Wagner: Phys. Rev. Lett. 17, 1133 (1966)
- Hohenberg: Phys. Rev. 158, 383 (1967)

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

16

Correlation Function

$$C(|\mathbf{r} - \mathbf{r}'|) = \langle \cos[\Theta(\mathbf{r}) - \Theta(\mathbf{r}')] \rangle = \langle \exp[i(\Theta(\mathbf{r}) - \Theta(\mathbf{r}')) \rangle$$

A general result says for a Gaussian model (i.e., a model with a quadratic effective Hamiltonian such as given by our free energy)

$$\langle \exp[i(\Theta(\mathbf{r}) - \Theta(\mathbf{r}')] \rangle = \exp\left\{-\frac{1}{2}\langle [\Theta(\mathbf{r}) - \Theta(\mathbf{r}')]^2 \rangle\right\}.$$

The result only depends on $\mathbf{r} - \mathbf{r}'$ by the translational invariance, and so we may take $\mathbf{r}' = 0$ for convenience.

Then introducing the Fourier mode representation

$$\begin{split} \langle [\Theta(\mathbf{r}) - \Theta(\mathbf{0})]^2 \rangle &= \sum_{\mathbf{q}\mathbf{q}'} \langle \delta\Theta_{\mathbf{q}}\delta\Theta_{\mathbf{q}'} \rangle (e^{i\mathbf{q}\cdot\mathbf{r}} - 1)(e^{i\mathbf{q}'\cdot\mathbf{r}} - 1) \\ &= \sum_{\mathbf{q}} \langle |\delta\Theta_{\mathbf{q}}|^2 \rangle 2(1 - \cos\mathbf{q}\cdot\mathbf{r}) \end{split}$$

18

We can roughly see how this comes as follows. Introduce the modes

$$C(r) = \left\langle \exp \left[i \sum_{\mathbf{q}} \delta \Theta_{\mathbf{q}} (e^{i\mathbf{q} \cdot \mathbf{r}} - 1) \right] \right\rangle$$

Now expand the exponential, and use the fact that averages of odd powers of $\delta\Theta_{\boldsymbol{q}}$ are zero

$$\begin{split} C(r) &= \mathrm{Re}[1 - \frac{1}{2} \sum_{\mathbf{q}\mathbf{q}'} \langle \delta\Theta_{\mathbf{q}} \delta\Theta_{\mathbf{q}'} \rangle (e^{i\mathbf{q}\cdot\mathbf{r}} - 1)] (e^{i\mathbf{q}'\cdot\mathbf{r}} - 1)] + \cdots] \\ &= 1 - \sum_{\mathbf{q}} \langle |\delta\Theta_{\mathbf{q}}|^2 \rangle (1 - \cos\mathbf{q}\cdot\mathbf{r}) + \cdots \\ &= \exp\left[- \sum_{\mathbf{q}} \langle |\delta\Theta_{\mathbf{q}}|^2 \rangle (1 - \cos\mathbf{q}\cdot\mathbf{r}) \right] \end{split}$$

(it can be shown that the higher order terms work for the last expression)

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

$$C(\mathbf{r}) = \exp[-\sum_{\mathbf{q}} \langle |\delta\Theta_{\mathbf{q}}|^2 \rangle (1 - \cos \mathbf{q} \cdot \mathbf{r})]$$

The sum appearing in the exponential is almost the same one we did before, since for large $\mathbf{q} \cdot \mathbf{r}$ the $\cos(\mathbf{q} \cdot \mathbf{r})$ term oscillates rapidly and may be replaced by its average value of zero. However for small $q < r^{-1}$ the $(1 - \cos \mathbf{q} \cdot \mathbf{r})$ factor becomes proportional to q^2 , and the logarithmic divergence is cutoff:

$$\sum_{\mathbf{q}} \langle |\delta\Theta_{\mathbf{q}}|^2 \rangle (1 - \cos \mathbf{q} \cdot \mathbf{r}) \simeq \frac{k_B T}{2\pi K} \int_{r^{-1}}^{q_c} \frac{dq}{q} = \frac{k_B T}{2\pi K} \ln q_c r$$

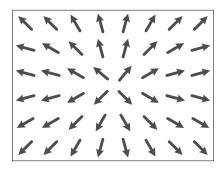
Note that inaccuracies in our evaluation of the integral can be absorbed into the definition of the constant q_c .

We get the important result of *power law* decay of correlations with an exponent that depends on temperature

$$C(r) \propto r^{-\eta}$$
 with $\eta(T) = \frac{k_B T}{2\pi K}$

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Topological Defects



Topological invariant (winding number)

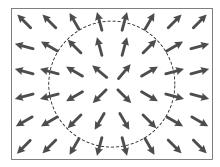
$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 1$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

20

Topological Defects

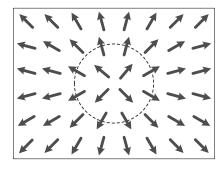


Topological invariant (winding number)

$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 1$$

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Topological Defects



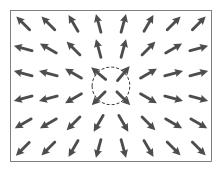
Topological invariant (winding number)

$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 1$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Topological Defects



Topological invariant (winding number)

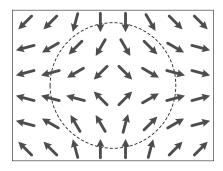
$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 1$$

Back Forward

22

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Topological Defects



Topological invariant (winding number)

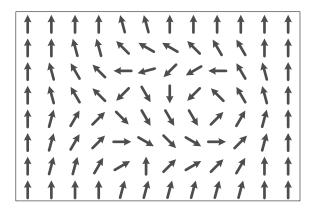
$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = -1$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

24

Topological Defects

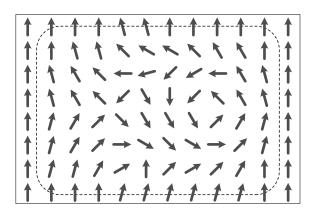


Plus-minus pair gives winding number 0

$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 0$$

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Topological Defects



Plus-minus pair gives winding number 0

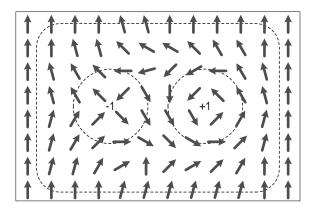
$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 0$$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

26

Topological Defects



Plus-minus pair gives winding number 0

$$\frac{1}{2\pi} \oint \nabla \Theta \cdot \mathbf{dl} = 0$$

Importance of Topological Defects

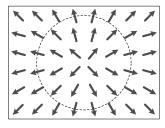
- Random arrangement of defects (of both signs) eliminates long range order and gives exponential decay of correlations
- May eliminate the generalized rigidity
 - ♦ Dislocations in crystals
 - ♦ Vortices in superfluids and superconductors
- · Provide a mechanism for dynamics in an ordered state
- Dominate dynamics in quenches from disordered initial conditions (coarsening, cf. cosmic strings, the Kibble mechanism)
- May be important in phase transition (e.g., 2d XY model)

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

28

Vortex Energetics in 2d



Energy of a vortex

$$E = \frac{1}{2}K \int d^2x (\nabla \Theta)^2 = \frac{1}{2}K \int 2\pi r \, dr \, r^{-2} = \pi K \ln(L/\xi) + c$$

Entropy of a vortex

$$S = k_B \ln(L^2/\xi^2) + c'$$

Free energy of a vortex

$$F = (\pi K - 2k_B T) \ln(L/\xi) + c'' < 0 \text{ for } T > \pi K/2k_B$$

30

Kosterlitz-Thouless Transition - 2d XY Model

• At low temperatures there is a phase with a nonzero spin stiffness constant *K* but no long range order: correlations decay as a power law that depends on temperature

$$C(r) \propto r^{-\eta}$$
 with $\eta(T) = \frac{k_B T}{2\pi K(T)}$

- In the low temperature phase there are bound pairs of plus-minus vortices, but no free vortices
- At the Kosterlitz-Thouless temperature T_{KT} given by $k_B T_{KT} = \pi K/2$ there is a "vortex unbinding" transition leading to free vortices
- For $T > T_{KT}$ there is exponential decay of correlations
- At $T = T_{KT}$ the stiffness constant K jumps discontinuously to zero
- The ratio $K(T_{KT})/k_BT_{KT}=2/\pi$ and is universal

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Dynamics

Have not yet specified the dynamics.

Different dynamics is appropriate for different physical systems, depending on what other thermodynamic variables there are, and how the order parameter couples to them.

Some examples follow:

Thin Film Nematic

 Θ describes the orientation of long molecules in the plane, and relaxes to minimize the free energy.

Most easily expressed in complex notation $(s_x, s_y) \Rightarrow S = |S|e^{i\Theta}$. Free energy becomes

$$F = \int d^d x \left[a(T - T_c)|S|^2 + \frac{1}{2}b|S|^4 + \gamma |\nabla S|^2 \right]$$

Relaxational dynamics is

$$\dot{S} = -\frac{1}{\tau_r} \frac{\delta F}{\delta S} \qquad \Rightarrow \qquad \tau_r \dot{S} = a(T_c - T)S - b|S|^2 S + \gamma \nabla^2 S$$

Far below T_c the magnitude |S| relaxes rapidly to the value S_0 at the bottom of the Mexican hat almost everywhere, leaving the low frequency phase dynamics

$$\dot{\Theta} = \frac{\gamma}{\tau_r} \nabla^2 \Theta$$
 (or $\dot{\Theta} = -\frac{1}{\tau_{\Theta}} \frac{\delta F}{\delta \Theta}$ with $F = \frac{1}{2} \int d^d x \ K(\nabla \Theta)^2$)

i.e., relaxation by diffusion.

Vortex dynamics may also be important.

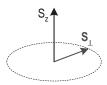
Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

32

Easy Plane Magnet

Spins can point in any direction, but anisotropy favors alignment in XY plane.



The XY and Z components of the spin have different prop-

$$S_z = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle s_{iz} \rangle$$
 is a conserved quantity
 $\mathbf{S}_{\perp} = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle \mathbf{s}_{i\perp} \rangle$ is the XY order parameter

$$\mathbf{S}_{\perp} = \Omega^{-1} \sum_{i \text{ in } \Omega} \langle \mathbf{s}_{i \perp} \rangle$$
 is the XY order parameter

 S_z and Θ are canonically conjugate variables in the Hamiltonian equations

$$\dot{S}_z = -\frac{\delta F}{\delta \Theta}, \qquad \dot{\Theta} = \frac{\delta F}{\delta S_z}$$

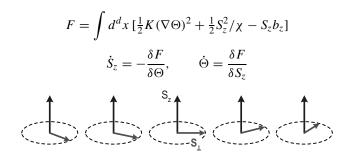
where the free energy (away from T_c)

$$F = \int d^d x \left[\frac{1}{2} K(\nabla \Theta)^2 + \frac{S_z^2}{2\chi} - S_z b_z \right]$$

plays the role of the effective Hamiltonian (b_z is μB_z with B_z the external field in the zdirection, χ is the z-spin susceptibility, and I've chosen the simple case of $\textbf{B}_{\perp}=0)$

34

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006



For $b_z = 0$ and small deviations $\delta \Theta$ from the uniform state

$$\delta \dot{S}_z = K \nabla^2 \delta \Theta$$
$$\delta \dot{\Theta} = \chi^{-1} \delta S_z$$

leading to propagating spin waves $\propto e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$ with the dispersion relation $\omega=cq$ and the propagation speed $c=\sqrt{K/\chi}$

Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 31 March 2006

Next Lecture

Superfluids and superconductors

- What are superfluidity and superconductivity?
- Description in terms of a macroscopic phase
- · Josephson effect
- Supercurrents that flow for ever
- · Four sounds