

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006	5
Turing on Broken Symmetry	
There appears superficially to be a difficulty confronting this theory of morphogenesis, or, indeed, almost any other theory of it. An embryo in its spherical blastula stage has spherical symmetry But a system which has spherical symmetry, and whose state is changing because of chemical reactions and diffusion, will remain spherically symmetrical for ever It certainly cannot result in an organism such as a horse, which is not spherically symmetrical.	
There is a fallacy in this argument. It was assumed that the deviations from spherical symmetry in the blastula could be ignored because it makes no particular difference what form of asymmetry there is. It is, however, important that there are <i>some</i> deviations, for the system may reach a state of instability in which these irregularities, or certain components of them, tend to growIn practice, however, the presence of irregularities, including statistical fluctuations in the numbers of molecules undergoing the various reaction, will, if the system has an appropriate kind of instability, result in this homogeneity disappearing.	

Forward

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006 6 Modern Interpretation • We now know that the structural information of biological organisms is encoded at the molecular level in the DNA • Coding is in terms of base sequences that code for the production of proteins with a rate controlled by other proteins: these can be thought of as the morphogens • How does the information at the molecular level become structure at the macroscopic level? • This process obviously uses the laws of physics, but are the "laws" of pattern formation involved? ♦ Yes in modelling \diamond ?? in real world Back Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006

Reaction-Diffusion

Two chemical species with concentrations u_1, u_2 that react and diffuse

$$\partial_t u_1 = f_1 (u_1, u_2) + D_1 \partial_x^2 u_1$$

 $\partial_t u_2 = f_2 (u_1, u_2) + D_2 \partial_x^2 u_2$

• Reaction:

$$a \mathbf{A} + b \mathbf{B} \rightarrow c \mathbf{C} + d \mathbf{D}$$

gives the reaction rate (law of mass action)

$$v(t) = -\frac{1}{a} \frac{d[\mathbf{A}]}{dt} = \dots = k[\mathbf{A}]^{m_{\mathbf{A}}} [\mathbf{B}]^{m_{\mathbf{B}}}$$

with $m_A = a \dots$ for elementary reactions

• Diffusion: conservation equation

 $\partial_t u_i = -\nabla \cdot \mathbf{j}_i$

with

$$\mathbf{j}_i = -D_i \nabla u_i$$

Back

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006	8
"Reaction" and "Diffusion"	
The form of the equations is not actually specific to chemical systems: nonlinear local terms and second order derivatives appear in many other systems:	
• nerve fibres (Hodgkin-Huxley), heart tissue etc.	
 reaction: currents across membrane through ion-channels with dynamic gate variables 	
♦ diffusion: resistive flow of current along membrane	
neural networks	
$\diamond~$ reaction: neuron firing as nonlinear function of inputs	
♦ diffusion: connectivity	
• gene networks	
\diamond reaction: gene expression controlled by other gene products	
\diamond diffusion: transport of gene products from cell to cell	
Back	Forward

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006

Turing Instability

• Stationary uniform base solution $\mathbf{u}_b = (u_{1b}, u_{2b})$

$$f_1(u_{1b}, u_{2b}) = 0$$
$$f_2(u_{1b}, u_{2b}) = 0$$

• Linearize about the base state $\mathbf{u} = \mathbf{u}_b + \delta \mathbf{u}$

 $\partial_t \delta u_1 = a_{11} \delta u_1 + a_{12} \delta u_2 + D_1 \partial_x^2 \delta u_1$

$$\partial_t \delta u_2 = a_{21} \delta u_1 + a_{22} \delta u_2 + D_2 \partial_x^2 \delta u_2$$

with $a_i = \partial f_i / \partial u_j \big|_{\mathbf{u} = \mathbf{u}_b}$.

• Seek a solution $\delta \mathbf{u}(t, x)$ that is a Fourier mode with exponential time dependence:

$$\delta \mathbf{u} = \delta \mathbf{u}_q \ e^{\sigma_q t} \ e^{iqx} = \begin{pmatrix} \delta u_{1q} \\ \delta u_{2q} \end{pmatrix} e^{\sigma_q t} e^{iqx}$$

Back

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006 Stability Analysis • Eigenvalue equation $\mathbf{A}_q \, \delta \mathbf{u}_q = \sigma_q \, \delta \mathbf{u}_q$ where $\mathbf{A}_q = \begin{pmatrix} a_{11} - D_1 q^2 & a_{12} \\ a_{21} & a_{22} - D_2 q^2 \end{pmatrix}$ • Eigenvalues are $\sigma_q = \frac{1}{2} \text{tr} \mathbf{A}_q \pm \frac{1}{2} \sqrt{(\text{tr} \mathbf{A}_q)^2 - 4 \det \mathbf{A}_q}$

Forward

Forward

Back

DIUS	opn	па	Da	la															
		4400			Sibith	11 18		相似	1	11110	11	JANK		٢,					
740			411	100	1000	DHIA	JARC		11110		JUNE						m		
1884	6 55	Dille	」捕訳	9110			I have						41			HIC.	-91	E Ge	
	< Hit	No.		110	JIIII			HIR	11				41	-		His	41	3	1111
- # H H	1 1 1		44		11			1111	his					-41			D.	1	AL.
1				Incos.							ANNE.	加制				11			111
		Cast Hint	1000	11110	HILL	INCO				加限	1.6	51110							
		11100	11118	SIL	Birth	11111	-Mills	CHINE I	- Bitte	THEN	10110	Inte	HILE	a a a					R.
			- Barrow	4 1	411	III	MARINE		Junt	1	周期	Willie	410						100
Date		Inne			11	411	38			HILL	4					THAN	-	1	
27/10		4.6	AMA		11110		HAL	明正			Mit	加重					< (c)	-	
41		相關			利用	《册化	4 1		精神	川市		11	胡服			8 B			
- 33366	1 BED	4 6	Hitte	期限			利用	Carlo Carlos			川和	林构		-			川		
	8 1 1	HIRE	加限	116	HIM	- HILL	and the)IIIII	1.0	THE R		ALIAN				4.			P
1111	Biin	414			licio		State.	AHW.	10.00	Contraction of the second		WIW	7///08						100
31110	JUL N	ain	DHIRE		1000		-		A	- all i	Hitt	41			٠.	MINN			R.
- 110	Mitte	Mitte	JA		11	1110	all.	MILL			Hite	41	116				-	1	100
-91		11	Ha				加服	hille		Mile	川根	川派	41			11		1 1	
11	Sel 1	1444	11		10	11			推制	1948		11	110				拥		
			11110			- Mille	MIR	ST.			digt-	11.44		Con long					15
						Hallen	ARE		1	UNITE	V.WIL	9.8		-133	×.,			11 6301	
					CILLIN	CHANN.	188.0	AHIII.		antim.		- Hilling	1	44		HIRK			i i c
					- ANRIAN				Janua		Hitt	1							100
				18		- BRUC			May		Mille								

Forward

Collective Effects in Equilibrium and Nonequilibrium Physics: June 19, 2006

Gene Circuit Description (Reinitz et al.)

Equations for the concentrations v_i^a of gene product *a* at nucleus *i*

$$\dot{v}_{i}^{a} = R^{a} g_{a} \left(\sum_{b} T^{ab} v_{i}^{b} + m^{a} v_{i}^{bcd} + h^{a} \right) + D(n) \left[(v_{i-1}^{a} - v_{i}^{a}) + (v_{i+1}^{a} - v_{i}^{a}) \right]$$

reaction diffusion

• Reaction: nonlinear interaction term

$$g_a(u) = \frac{1}{2} \left[1 + \frac{u}{\sqrt{u^2 + 1}} \right], \qquad g_a(-\infty) = 0, \ g_a(\infty) = 1$$

with T^{ab} an interaction matrix, v_i^{bcd} the (fixed) concentration of the maternal *bcd* gene product, and R^a , m^a , h^a constants. (Other formulations replace g_a by a binary on-off function.)

- Diffusion: discrete nuclei-nuclei transport with diffusion constant D(n) depending on cleavage cycle n (geometry)
- The many parameters are fit over several cleavage cycles to large data base

Back

